Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quang Duy
Xem chi tiết
cao mạnh lợi
Xem chi tiết
Thanh Tùng DZ
4 tháng 5 2019 lúc 20:15

\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\). do đó :

\(x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz},y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz},z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)

suy ra : ( x - y ) ( y - z ) ( z - x ) = \(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2y^2z^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=y=z\\x^2y^2z^2=1\Rightarrow xyz=\mp1\end{cases}}\)

Hoang Thi Minh Phuong
Xem chi tiết
cao mạnh lợi
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Hồ Thu Giang
Xem chi tiết
Thầy Giáo Toán
16 tháng 9 2015 lúc 7:20

Từ giả thiết ta suy ra \(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\).            

Áp dụng tính chất của dãy tỉ số bằng nhau ta được từ

 \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(z+x\right)-\left(x+y\right)}{ca-ab}=\frac{z-y}{a\left(c-b\right)}=\frac{y-z}{a\left(b-c\right)}.\)        (1)

Tương tự, \(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{z-x}{b\left(c-a\right)},\)              (2)
và 

\(\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\to\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{\left(y+z\right)-\left(z+x\right)}{bc-ca}=\frac{y-x}{c\left(b-a\right)}=\frac{x-y}{c\left(a-b\right)}.\)         (3)

Từ (1), (2), (3) ta suy ra \(\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}.\)     (ĐPCM)

thanh huyen
5 tháng 11 2017 lúc 8:04

em cũng gần giống thầy

an nguyenpham
1 tháng 11 2018 lúc 7:54

mk ko hiểu cái bước trước chữ tương tự

Trân Vũ
Xem chi tiết
Thằn Lằn
Xem chi tiết
I don
15 tháng 6 2018 lúc 18:31

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}\) (1) 

=> \(\frac{a}{\left(x^2-yz\right)}.\frac{a}{\left(x^2-yz\right)}=\frac{b}{y^2-xz}.\frac{c}{z^2-xy}=\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}\)

a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] => 
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2) 
Thực hiện tương tự ta cũng có 
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3) 
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4) 
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.

Ngọc Nguyễn
Xem chi tiết
Nyatmax
1 tháng 9 2019 lúc 13:16

Ta co:\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)

\(\Leftrightarrow2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}|\)

๖²⁴ʱƘ-ƔℌŤ༉
1 tháng 9 2019 lúc 14:14

\(x+y+z=0\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=0\)(Vì \(x,y,z\ne0\))

\(\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=0\)

\(\Leftrightarrow2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)=0\)

Mà \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\right)\)

nên \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Leftrightarrow\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\left|\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right|\)(Áp dụng HĐT \(\sqrt{x^2}=\left|x\right|\))