Chmr nếu:
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) với \(x\ne y,yz\ne1,xz\ne1,x\ne0,y\ne0,z\ne0\)
thì: \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho các số dương x;y;z thoả mãn:xyz=\(\frac{1}{2}\)Chứng minh rằng:
\(\frac{yz}{x^2\left(y+x\right)}+\frac{xz}{y^2\left(x+z\right)}+\frac{xy}{z^2\left(x+y\right)}\ge xy+yz+xz\)
Cho số dương x,y,z thõa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm Max \(K=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x,y,z là 3 số dương.Chứng minh rằng
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
Cho x,y,z thỏa mãn xy+yz+xz=1
Tính tổng: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1-z^2}}\)
Cho x,y,z thỏa mãn xy+yz+xz=1
Tính tổng: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x,y,z >0 tm 1/xy +1/yz + 1/xz =1
Tính Max Q = \(\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Chị @Akai Haruma giúp e làm bài này đc k ạ!!!
tì x;y;z biết:
\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+1-2}=x+y+z\left(vớix;y;z\ne0\right)\)