Tìm 2 số x, y biết x - y = -24 và x : 3 = y : (-2)
Tìm 2 số dương x,y biết x phần y bằng 2 phần 3 và x nhân y bằg 24
Tìm các số a, b, c biết 2a = 3b, 5b = 7c và 3a – 7b + 5c = -
30.
Tìm các số x, y, z biết x : y : z = 3 : 4 : 5 và 2𝑥^2 + 2𝑦^2 -
3𝑧^2 = -100.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
\(2a=3b\text{⇒}a=\dfrac{3b}{2}\) , \(5b=7c\text{⇒}c=\dfrac{5c}{7}\)
\(3a-7b+5c\) \(=-30\)
⇔ \(3.\dfrac{3b}{2}-7b+5.\dfrac{5b}{7}=-30\)
⇔\(63b-98b+50b=-420\)
⇔\(b=-28\) ⇒\(\left\{{}\begin{matrix}a=-42\\c=-20\end{matrix}\right.\)
Tìm 2 số x,y biết 5.x=3.y và x+y=-16
5.x =3.y
=) x = 3/5 y
x = -16 : ( 3 + 5 ) x 3 = -6
y = -16 - -6 = -10
tìm 2 số x,y biết 5.x=3.y và x+y = -16
Có: \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-16}{8}=-2\)
\(\Rightarrow\begin{cases}x=-6\\y=-10\end{cases}\)
tìm 2 số x và y , biết ; x : 2 = y :(-5) và x - y = -7
Ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Rightarrow x=-1.2=-2\)
\(\Rightarrow y=-1.\left(-5\right)=5\)
x:2=y:(-5) và x-y=(-7)
x:2=y:(-5) suy ra x/2=y/(-5)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2=y/(-5)=x-y/2-(-5)=-7/7=(-1)
x/2=(-1) suy ra x=(-1)*2=(-2)
y/(-5)=(-1) suy ra y=(-1)*(-5)=5
vậy x=(-2) và y=5
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
a)Tìm 2 số thực x,y biết rằng : \(\frac{x}{2}=\frac{y}{5}\)và x+y=42
b)Tìm số hữu tỉ x biết | x- 0,25 | - \(\frac{5}{6}\)= \(=1\frac{2}{3}\)
c) Cho biết x , y là hai đại lượng tỉ lệ theo hệ số tỉ lệ x=8 và y=-17 . Tìm hệ số tỉ lệ ?
Các bạn giúp mình cần gấp nhé
a. Theo t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=>\(\frac{x}{2}=6\Rightarrow x=6.2=12\)
=>\(\frac{y}{5}=6\Rightarrow y=6.5=30\)
Vậy x=12; y=30.
b. \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}\)
=> \(\left|x-0,25\right|=1\frac{2}{3}+\frac{5}{6}\)
=> \(\left|x-0,25\right|=\frac{5}{2}=2,5\)
+) x-0,25=2,5
=> x=2,5+0,25
=> x=2,75
+) x-0,25=-2,5
=> x=-2,5+0,25
=> x=-2,25
Vậy x \(\in\){-2,25; 2,75}.
c. y=kx
=> -17=k.8
=> k=-17/8
Vậy hệ số tỉ lệ là -17/8.
a) \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{42}{7}=6\)
=> x=12 ; y = 30
b) \(\left|x-0,25\right|-\frac{5}{6}=1\frac{2}{3}=>\left|x-0,25\right|=\frac{5}{3}+\frac{5}{6}=\frac{5}{2}=2,5\)
=> x-0,25 = 2,5 hoac: -2,5
=> x = 2,75 hoac x= -2,25
Vay: x la { 2,75 ; -2,25 }
c) Ti le gi vay ban.
Neu thuan thi he so ti le la: \(-\frac{17}{8}\)
Neu nghich thi he so ti le la : -136
Tìm số nguyên x và y biết:
xy-5y+5x-24=12
\(\Leftrightarrow x\left(y+5\right)=5y+36\)
\(\Leftrightarrow x=\dfrac{5y+36}{y+5}=\dfrac{5\left(y+5\right)+11}{y+5}=5+\dfrac{11}{y+5}\left(y\ne-5\right)\) (1)
x nguyên khi \(11⋮\left(y+5\right)\)
\(\Rightarrow\left(y+5\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow y=\left\{-16;-6;-4;6\right\}\) Lần lượt thay các giá trị của y vào (1) để tìm các giá trị tương ứng của x
tìm số tự nhiên cs 3 chữ số \(\overline{xyz}\) biết : \(\dfrac{x^2}{4}\) =\(\dfrac{y^2}{9}\)=\(\dfrac{z^2}{25}\) và x-y+z =4
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`
`-> x/2=y/3=z/5=1`
`-> x=2*1=2, y=3*1=3, z=5*1=5`
=>x/2=y/3=z/5 và x-y+z=4
Áp dụng tính chất của DTSBN, ta được:
x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1
=>x=2; y=3; z=5
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{5}=1\Rightarrow z=5\)
Vậy x =2; y =3; z =5