Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ trà my
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
30 tháng 4 2020 lúc 15:30

A B C O I M

1.Vì đường kính của (O) là 10cm

\(\Rightarrow\) Bán kính của (O) là  \(R=\frac{10}{2}=5\)

\(\Rightarrow d\left(O,d\right)=3< R=5\)

\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt

2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB

Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)

\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB

3.Vì O, I là trung điểm AC,AB

=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)

4 . Vì AC là đường kính của (O) 

\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)

Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)

\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)

 
Khách vãng lai đã xóa
Ánh Loan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2018 lúc 15:14

Đáp án là B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 8:31

Gọi O là tâm đường tròn, H là chân đường vuông góc hạ từ O đến đường thẳng d

⇒ Độ dài OH là khoảng cách từ O đến đường thẳng d

Ta có: OH = 3cm < R = 5 cm ⇒ d cắt (O) tại 2 điểm phân biệt

Ngô Quang Đạt
Xem chi tiết
DOAN QUOOC BAO
Xem chi tiết
Nguyễn Minh Quang
9 tháng 8 2021 lúc 9:21

ta có bán kính của đường tròn là 10cm :2 =5 cm

do khoảng cách từ tâm đường tròn đến đường thẳng a bằng đúng bán kính của đường tròn nên

Đường tròn tiếp xúc với đường thẳng a

Khách vãng lai đã xóa
Sofia Nàng
Xem chi tiết
tuệ anh
10 tháng 5 2020 lúc 21:38

a) Kẻ OH ⊥⊥ d

=> OH là khoảng cách từ d tới tâm đường tròn (O)

mà OH < R (3 < 5)

=> Đường thẳng d cắt đường tròn (O)

b) Xét ΔΔOAH vuông tại H có:

OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)

=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)

Xét (O): AB là dây, OH ⊥⊥ AB

=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)

=> AB = 2AH = 8(cm)

c) Xét ΔΔABC có: O, H trung điểm AC, AB

=> OH là đường trung bình ΔΔABC

=> OH // BC mà OH ⊥⊥ AH

=> BC ​⊥⊥​ AH => ΔΔABC vuông tại B

=> AB2 + BC2 = AC2

=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)

Xét ΔΔABC vuông tại B

có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′

=> Aˆ=36o52′A^=36o52′

d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM

có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)

=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)

lại có: AB + BM = AM ; AB = 8(cm)

=> BM = 4,5(cm)

Khách vãng lai đã xóa
Sóng Bùi
Xem chi tiết
Kiệt Nguyễn
12 tháng 7 2020 lúc 19:12

1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)

nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)

2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)

Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)

3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'

Ta có \(\widehat{CN'A}=\widehat{CAM}\)\(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)

Vậy ba điểm A, M, N thẳng hàng (đpcm)

4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)

Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)

Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)

Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\) 

Từ \(MA^2=AO.MO\)  suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)

Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)

Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)

Khách vãng lai đã xóa
Cao Thị Thùy Dung
Xem chi tiết
Phạm Hoàng Yến
Xem chi tiết