B1:chứng minh rằng tổng các chữ số của bình phương bất kì số tự nhiên nào cũng không thể bằng số nguyên tố 977
B2:tìm tất cả các số tụ nhiên n sao cho trong dãy n+1,n+2,...,n+10 có nhiều số nguyê tố nhất
HELP mình vs chiều nay đi học rồi
1/ a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
2/ Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
3/ Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Tìm tất cả các số tự nhiên n sao cho trong dãy n+1, n+2, n+3,....n+10 có nhiều số nguyên tố nhất
Ta có các số nguyên tố:
2; 3; 5; 7; 11; 13; 17; 19; 23; ...
Các số nguyên tố càng lớn thì khoảng cách giữa chúng càng lớn
Nên n phải là các số nhỏ để được 10 số liên tiếp là số nguyên tố nhiều nhất
⇒ n có 3 khả năng ⇒ n ϵ {1; 2; 3}
TH1: n = 1 ⇒ Có 5 số nguyên tố (2;3;5;7;11)
TH2: n = 2 ⇒ Có 4 số nguyên tố (3;5;7;11)
TH3: n = 3 ⇒ Có 4 số nguyên tố (5;7;11;13)
Vậy khi n = 1 thì dãy số: n +1; n + 2; n + 3; ...; n + 10 có nhiều số nguyên tố nhất
1,Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc
tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
2,a. Tìm n để n2+ 2006 là một số chính phương.
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2+ 2006 là số nguyên tố hay là hợp số.
Câu 1 : (2 điểm) Cho biểu thức 2 2 1
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối
giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho 1 2 nabc và 2 ncba )2(
Câu 3: (2 điểm)
a. Tìm n để n2
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2
Câu 4: (2 điểm)
a. Cho a, b, n N*
b. Cho A =
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số
các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đườngthẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng
qui. Tính số giao điểm của chúng.
1. chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó
thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
2. chứng minh rằng tổng các bình phương của k số nguyên liên tiếp ( k = 3, 4,5 ) ko là số chính phương .
3. tìm tất cả các số tự nhiên để :
n1994+ n1993+1 là số nguyên tố .
còn bài cuối chỉ cần bạn đặt \(n^{1994}+n^{1993}=\left(n+1\right)n^{1993}\)
mà số nguyên tố nếu mình nhớ không nhầm thì thường được biểu diễn dưới dạng là 4k+1 thì phải hay còn dạng nữa mình không nhớ lắm hay là 3k+1 gì đó nữa
lâu nay lười giải quá nhưng thôi mình giải cho bạn.
câu 1: ta gọi 2 số đó là a và b. Ta có:
\(a=x^2+y^2\)
\(b=n^2+m^2\)
=> \(ab=\left(x^2+y^2\right)\left(n^2+m^2\right)\)
bạn nhân nó ra sau đó cộng thêm 2nmxy và trừ 2nmxy rồi áp dụng hằng đẳng thức 1 và 2
câu 2: gọi 3 số đó là gì thì tùy cậu nhưng ở đây gọi là n, n+1, n+2 cho thuận dấu với trường hợp k=3
\(n^2+\left(n+1\right)^2+\left(n+2\right)^2=3n^2+6n+5\)
rồi ta thấy ra vế phải không thể nào rút ra được bình phương của một tổng tức áp dụng theo hằng đẳng thức 1 nên tổng bình phương của k=3 số nguyên liên tiếp không thể là số chính phương
với trường hợp k=4 và 5 làm tương tự
1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )
2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd
3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn lại.
4. Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vị. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.
5. Hãy viết số 100 dưới dạng tổng các số lẽ lien tiếp.
6. Tìm số tự nhiên có 3 chữ số, biết rằng nó tăng gấp n lần nếu cộng mỗi chữ số của nó với n ( n là số tự nhiên, có thể gồm một hoặc nhiều chữ số ).
7. Tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác không.
8. Tìm số tự nhiên x có 6 chữ số, biết rằng các tích 2x, 3x, 4x, 5x, 6x cũng là số có 6 chữ số gồm cả 6 chữ số ấy.a. Cho biết 6 chữ số của số phải tìm là 1, 2, 4, 5, 7, 8.b. Giải bài toán nếu không cho điều kiện a.
9. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết cho 5n
Xem nội dung đầy đủ tại:http://123doc.org/document/2674306-tuyen-chon-toan-nang-cao-va-phat-trien-lop-6.htm
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Bài 1: Tìm tất cả các số tự nhiên co 3 chữ số abc sao cho abc = n2 - 1 và cba = ( n - 2 )2
Bài 2: Cho 10 số tự nhiên bất kì: a1, a2, ... , a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Ta có ABC = 100.a + 10.b + c = n ^ 2 - 1 ( 1 )
CBA = 100.c + 10.b + a = n ^ 2
Lấy 1 trừ 2 ta được
99. ( a - c ) = 4n - 5
Suy ra 4n - 5 chia hết cho 99
vì 100 < abc < 999 nên
100 < n ^ 2 - 1 < 999 = > 101 < n ^ 2 < 1000 => 11 < 31 => 39 < an - 5 < 199
Vì 4n - 5 chia hết cho 99 nên 4n - 5 = 99 = > n = 26 = > abc = 675
Vậy có 1 số tự nhiên có ba chữ số là : 675
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha