Cho x/y+z=y/z+x=z/x+y
Tính (1+x/y)(1+y/z)(1+z/x)
cho xyz thỏa mãn
x+y-2021z/z=y+z-2021x/x=z+x-2021y/y
tính p=(1+y/x)*(1+x/z)*(1+z/y)
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
B1: Cho x,y,z = 0. Tính Q= ( x-y/z + y-z/x + z-x/y) ( z/x-y + x/y-z + y/ z-x)
B2: Cho x√x + y√y + z√z = 3√xyz. Tính Q = ( 1+ x/y) ( 1+ y/z)( 1+z/x)
cho x/y+z+1 = y/z+1+x = z/1+x+y = 1/x+y+z. CMR biểu thức sau có giá trị nguyên: A = x+y/z+1 = y+z/1+x = z+1/x+y = 1+x/y+z
CHO x,y,z khác 0 và (x-y-z)/x = (y-z-x)/y = (z-y-x)/z.
Tính (1+y/x)(1+z/y)(1+x/z)
Áp dụng tính chất dãy tie số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{y-z-x}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-z-x+z-x-y}{x+y+z}=-\frac{\left(x+y+z\right)}{x+y+z}=-1\)
\(\Rightarrow\hept{\begin{cases}x-y-z=-x\\y-z-x=-y\\z-y-x=-z\end{cases}\Rightarrow\hept{\begin{cases}y+z=-2x\\z+x=-2y\\x+y=-2z\end{cases}}}\)
\(\Rightarrow\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=\frac{\left(x+y\right)}{x}.\frac{\left(y+z\right)}{y}.\frac{\left(z+x\right)}{z}=-\frac{8xyz}{xyz}=-8\)
Cho x+y/z=y+z/x=z+x/y;x,y,z khác 0.Tính P=(1+x/y).(1+y/z).(1+z/x)
Bài1: Cho x+y+z=0; xyz(x-y)(y-z)(z-x)#0. CMR: A=(x-y/z + y-z/x + z-x/y)(z/x-y + x/y-z + y/z-x) có giá trị ko đổi
Bài 2: CMR nếu x+y+z=m; 1/x +1/y +1/z=m thì (x-m)(y-m)(z-m)=0
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Cho x+y+z= 2016 và 1/(x+y)+1/(y+z)+1/(x+z)=1/8
Tính P= x/(y+z)+y/(x+z)+z/(x+y)
Cho x+y+z= 2016 và 1/(x+y)+1/(y+z)+1/(x+z)=1/8
tính P=x/(y+z)+y/(x+z)+z/(x+y)