a) Vẽ đường tròn tâm O bán kính 3 cm.
b) Vẽ đường tròn tâm I bán kính 35 mm.
Vẽ đường tròn (O;2cm). Gọi A là một điểm nằm ngoài đường tròn (O;2cm). OA cắt đường tròn (O;2cm) ở B biết OA= 3 cm.
a) Tính AB
b) vẽ đường tròn tâm B bán kính BA. Hỏi điểm O có nằm trong đường tròn tâm B bán kính AB không? Vì sao?
c) đường tròn tâm B bán kính BA cắt đường tròn tâm O bán kính 2cm ở P và Q, cắt OA ở K. Chứng tỏ K nằm trong đường tròn tâm O bán kính 2 cm
Vẽ đường tròn tâm O và tâm I bán kính 2cm, trong đó điểm I nằm trên đường tròn (O) và cắt nhau tại A, B.
a) Vẽ các đường tròn tâm A, tâm B bán kính 2cm.
b) Hai đường tròn trên có đi qua O và I không? Chúng có cắt nhau không? Vì sao?
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
Vẽ đường tròn tâm O và tâm I bán kính 2cm, trong đó điểm I nằm trên đường tròn (O) và cắt nhau tại A, B.
a) Vẽ các đường tròn tâm A, tâm B bán kính 2cm.
b) Hai đường tròn trên có đi qua O và I không? Chúng có cắt nhau không? Vì sao?
a) HS tự vẽ hình.
b) Hai đường tròn trên có đi qua O và I. Chúng có cắt nhau.
vẽ đường tròn tâm O, bán kính 2cm. Lấy điểm A trên đường tròn ấy. Vẽ đường tròn tâm O bán kính 2cm. Hai đường tròn trên cắt nhau tại C và D. Vẽ đường tròn tâm C, bán kính 2cm
a) vì sao đường tròn (A;2cm) đi qua O
b) vì sao đường tròn (C;2cm) đi qua O,A
a. vì AO =2cm nên đường tròn (A,2cm) đi qua O
b, vì CO=CA=2cm nên đường tròn (C,2cm) đi qua A và O
Cho đường tròn tâm O bán kính 2cm trên đường tròn tâm O Lấy điểm O' vẽ đường tròn tâm O bán kính 2cm hai đường tròn này cắt nhau tại điểm A và B
đường thẳng OO'cắt đường tròn tâm O bán kính 2cm tại điểm thứ 2M và cắt đường tròn tâm O bán kính 2cm tại điểm thứ 2N.Tính MN
Vẽ đường tròn tâm O, đường kính AD. Vẽ đường tròn tâm A, bán kính AO cắt đường tròn tâm O ở B và F. Vẽ đường tròn tâm D, bán kính DO cắt đường tròn tâm O ở C và E (B và C thuộc cùng một nửa mặt phẳng bờ AD). Dùng compa so sánh các dây AB, BC, CD, DE, EF và FA.
Xác định được AB = BC = CD = DE = EF = FA.
Vẽ đường tròn tâm O, đường kính AD. Vẽ đường tròn tâm A, bán kính AO cắt đường tròn tâm O ở B và F. Vẽ đường tròn tâm D, bán kính DO cắt đường tròn tâm O ở C và E (B và C thuộc cùng một nửa mặt phẳng bờ AD). Dùng compa so sánh các dây AB, BC, CD, DE, EF và FA.
Xác định được AB = BC = CD = DE = EF = FA.
Vẽ hình liên tiếp theo các cách diễn đạt sau:
a. Vẽ đoạn thẳng AB=2cm. Vẽ đường tròn (C1) tâm A , bán kính AB
b. Vẽ đường tròn (C2) tâm B bán kính AB. Gọi các giao điểm của đường tròn này với đường tròn (C1) là C và G.
c. Vẽ đường tròn (C3) tâm C, bán kính AC. Gọi giao điểm mới của đường tròn này với đường tròn (C1) là D
d. Vẽ đường tròn (C4) tâm D bán kính AD. Gọi giao điểm mới của đường tròn này với đường tròn (C1) là E
e. Vẽ đường tròn (C5) tâm E bán kính AE. Gọi giao điểm mới của đường tròn này với đường tròn (C1) là F
f. Vẽ đường tròn (C6) tâm F bán kính AF
g. Vẽ đường tròn (C7) tâm G bán kính AG
Sau khi vẽ như trên hãy so sánh các đoạn thẳng AB, BC, CD, DE, EF, FG, GB
Sau khi vẽ ta được hình như sau:
Khi đó, các đoạn thẳng A B = B C = C D = D E = E F = F G = G B (vì cùng bằng bán kính).
Vẽ hình liên tiếp theo cách diễn đạt sau
Vẽ đoạn thẳng AB = 2cm. Vẽ đường tròn (c1) tâm A, bán kính AB.
Vẽ đường tròn (c2) tâm B, bán kính AB. Gọi các giao điểm của đường tròn này với đường tròn (c1) là C và G.
Vẽ đường tròn (c3) tâm C, bán kính AC. Goi giao điểm mới củađường tròn này với đường tròn (c1) là D.
Vẽ đường tròn (c4) tâm D, bán kính AD. Gọi giao điểm mới của đường tròn này với đường tròn (c1) là E.
Vẽ đường tròn (c5) tâm E, bán kính AE. Gọi giao điểm mới của đường tròn này với đường tròn (c1) là F
Vẽ đường tròn (c6) tâm F, bán kính AF.
Vẽ đường tròn (c7) tâm G, bán kính AG.
Sau khi vẽ như trên hãy so sánh các đoạn thẳng: AB, BC, CD, DE, EF, FG, GB
Sau khi vẽ ta được hình bs.17
Khi đó, các đoạn thẳng: AB, BC, CD, EF, FG, GB bằng nhau (vì cùng bằng bán kính).
Cho đường tròn tâm O, bán kính R, đường kính AB, vẽ đường tròn tâm I, đường kính OA. a. Chm 2 đường tròn tâm O và tâm I tiếp xúc nhau, b. Dây AC của đường tròn tâm O cắt tâm I tại D. Chm ID//OC. c. Biết AC = R căn 3 . Tính theo R , diện tích ODCB
a:
I nằm giữa O và A
=>OI+IA=OA
=>OI=OA-AI
=R-R'
=>(O) với (I) tiếp xúc nhau tại A
b: ΔIAD cân tại I
=>góc IAD=góc IDA
=>góc IDA=góc OAC
ΔOAC cân tại O
=>góc OAC=góc OCA
=>góc IDA=góc OCA
mà hai góc này đồng vị
nên ID//OC
c: Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó; ΔACB vuông tại C
Xét ΔACB vuông tại C có cos CAB=AC/AB=1/2*căn 3
=>góc CAB=30 độ
CB=căn AB^2-AC^2=R/2
\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\dfrac{R\sqrt{3}}{2}\cdot\dfrac{1}{2}R=\dfrac{R^2\sqrt{3}}{8}\)
Xét ΔADO vuông tại D và ΔACB vuông tại C có
góc DAO chung
Do đó: ΔADO đồng dạng với ΔACB
=>\(\dfrac{S_{ADO}}{S_{ACB}}=\left(\dfrac{AO}{AB}\right)^2=\left(\dfrac{1}{4}\right)\)
=>\(S_{ODCB}=\dfrac{3}{4}\cdot S_{ACB}=\dfrac{3}{4}\cdot\dfrac{R^2\sqrt{3}}{8}=\dfrac{3\cdot\sqrt{3}\cdot R^2}{32}\)