Giải bất pt sau : x bình - 4 < 0
Giải hệ bất pt sau :
\(\left\{{}\begin{matrix}4-3x-x^2\ge0\\x^2+x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le1\\\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-4\le x< -2\)
giải pt và bất pt sau:
a.5|2x-1|-3=7
b.(2x+3)(x-2)-x^2+4=0
c. 2x-3/2<1-3x/-5
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
Giải bất pt sau
\(\left(x-1\right)\left(3x^2+9x-12\right)< 0\)
Giải bất pt sau:
a, x^2 - 5x + 6 nhỏ hơn hoặc bằng 0
\(x^2-5x+6\le0\)
\(\Leftrightarrow x^2-2x-3x+6\le0\)
\(\Leftrightarrow x.\left(x-2\right)-3.\left(x-2\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\text{Mà }x-2>x-3\text{ nên :}\)
\(x-2\ge0\text{ và }x-3\le0\)
\(\Leftrightarrow x\ge2\text{ và }x\le3\Rightarrow2\le x\le3\)
1, Giải bất pt sau:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\)
2, Xác định m để hệ bất pt sau có nghiệm:
a, \(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b, \(\left\{\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
(5-x)(x-1)(2+3x) ≤ 0
giải bất pt
(5-x)(x-1)(2+3x) ≤ 0
↔ 5-x≤0 <=> x≥5 (1)
x-1 ≤ 0<=> x≤ 1 (2)
2+3x ≤ 0 <=> x≤ -2/3 (3)
Từ (1),(2),(3) ta có:
x≥5 or x≤1 or x≤ -2/3
chúc bạn học tốt !!!
Xét \(5-x=0\Leftrightarrow x=5\)
\(x-1=0\Leftrightarrow x=1\)
\(2+3x=0\Leftrightarrow x=-\dfrac{2}{3}\)
Bảng xét dấu:
Để VT\(\le\)0 <=>\(\left[{}\begin{matrix}-\dfrac{2}{3}\le x\le1\\x\ge5\end{matrix}\right.\)
Vậy...
bạn ê làm bài gì trong lhó thế
giải ra x=1,y-1 Nhưng viết trên đây khó quá @_@
giải bất pt x-1/x+2<0
Điều kiện xác định : \(x+2\ne0\) hay \(x\ne-2\)
Ta có :
\(\frac{x-1}{x+2}< 0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}}\)
\(\Rightarrow\)\(-2< x< 1\)
Trường hợp 2 :
\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}}\) ( loại )
Vậy \(-2< x< 1\)
Chúc bạn học tốt ~
giải bất pt sau
a) (2x+1)(x-1) >0
b) (3x+1)(x-5)(-4x +5) >= 0
c) x +2/x-2 =< 3x+1 / 2x -1
\(\left(2x+1\right)\left(x-1\right)>0\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -\frac{1}{2}\end{matrix}\right.\)
\(\left(3x+1\right)\left(x-5\right)\left(-4x+5\right)\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-\frac{1}{3}\\\frac{5}{4}\le x\le5\end{matrix}\right.\)
\(\frac{x+2}{x-2}\le\frac{3x+1}{2x-1}\Leftrightarrow\frac{3x+1}{2x-1}-\frac{x+2}{x-2}\ge0\)
\(\Leftrightarrow\frac{x^2-8x}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\frac{x\left(x-8\right)}{\left(2x-1\right)\left(x-2\right)}\ge0\Leftrightarrow\left[{}\begin{matrix}x\le0\\\frac{1}{2}< x< 2\\x\ge8\end{matrix}\right.\)
Giải bất pt: (x-2)(x^2 + 5x + 6) >0