Cho 3 số a,b,c là số thực ko âm thỏa mãn \(a^2+b^2+c^2+abc=4\)
tìm Min và Max của P=a+b+c
a2+b2+c2=4−abc≤4
Smax=4 khi 1 trong 3 số bằng 0
4=abc+a2+b2+c2≥abc+33√(abc)2
Đặt 3√abc=x>0⇒x3+3x2−4≤0
⇔(x−1)(x+2)2≤0⇒x≤1
⇒abc≤1⇒S=4−abc≥3
Dấu "=" xảy ra khi a=b=c=1
Cho a;b;c là các số thực không âm thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm min và max của \(A=a^3+b^3+c^3\)
\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)
Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(A_{min}=3\) khi \(a=b=c=1\)
Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)
\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)
Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)
\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)
\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
Câu 1:cho a,b thuộc [1;2]. Tìm Min,Max của S=(a+b)(1/a+1/b).
Câu 2:cho a,b>=0,c>=1 thỏa mãn a+b+c=2.tìm max P=(6-a^2-b^2-c^2)(2-a^b^c).
Câu 3:Cho a,b,c thuộc [1;3] và a+b+c=6. Tìm Min,Max của A=a^3+b^3+c^3.
Làm gấp giúp mik vs ạ
cho biểu thức \(P=a^4+b^4-ab\), với a,b là các số thực thỏa mãn \(a^2+b^2+ab=3\)
tìm Min và MAx của biểu thức P
Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)
Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:
\(7x^4+11x^3-3x^2-4x-2=0\)
Là một pt không thể phân tích về các pt bậc thấp hơn
Nếu sửa đề thế này thì có thể quy về 1 biến khá đơn giản:
\(3-ab=a^2+b^2\ge2ab\Rightarrow ab\le1\)
\(3-ab=a^2+b^2\ge-2ab\Rightarrow ab\ge-3\)
\(\Rightarrow-3\le ab\le1\)
\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)
Đặt \(ab=x\Rightarrow-3\le x\le1\)
\(P=-x^2-7x+9=\left(-x^2-7x+8\right)+1=1+\left(1-x\right)\left(x+8\right)\ge1\)
\(P=\left(-x^2-7x-12\right)+21=21-\left(x+3\right)\left(x+4\right)\le21\)
a,b,c là các số thực không âm thỏa mãn a+b+c=2. Tìm max và min của \(P=\sqrt{a+b^3c^3}+\sqrt{b+c^3a^3}+\sqrt{c+a^3b^3}\)
Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:
Min:
\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)
\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)
\(\Rightarrow P\ge\sqrt{2}\)
\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị
Cho các số thực không âm a;b;c thỏa mãn \(a^2+b^2+c^2=3\)
Tìm max và min của \(P=\frac{a}{2+b}+\frac{b}{2+c}+\frac{c}{2+a}\)
Cho các số thực a,b không âm thoả mãn: a + b = \(\dfrac{1}{2}\). Tìm max và min của biểu thức: P = \(\dfrac{a}{1-a}+\dfrac{b}{1-b}\)
*Tìm min:
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)
\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)
\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3
*Tìm max: \(a,b\ge0\)
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)
\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)
\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)
Vậy maxP=1