Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Người Vô Danh
Xem chi tiết
Vũ Quang Huy
23 tháng 5 2022 lúc 22:45

a2+b2+c2=4−abc≤4

Smax=4 khi 1 trong 3 số bằng 0

4=abc+a2+b2+c2≥abc+33√(abc)2

Đặt 3√abc=x>0⇒x3+3x2−4≤0

⇔(x−1)(x+2)2≤0⇒x≤1

⇒abc≤1⇒S=4−abc≥3

Dấu "=" xảy ra khi a=b=c=1

pro
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2022 lúc 9:36

\(a^3+a^3+1\ge3\sqrt[3]{a^3.a^3.1}=3a^2\)

Tương tự: \(2b^3+1\ge3b^2\) ; \(2c^3+1\ge3c^2\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(a^2+b^2+c^2\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(A_{min}=3\) khi \(a=b=c=1\)

Lại có: \(\left\{{}\begin{matrix}a;b;c\ge0\\a^2+b^2+c^2=3\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le\sqrt{3}\)

\(\Rightarrow a^2\left(a-\sqrt{3}\right)\le0\Rightarrow a^3\le\sqrt{3}a^2\)

Tương tự: \(b^3\le\sqrt{3}b^2\) ; \(c^3\le\sqrt{3}c^2\)

\(\Rightarrow a^3+b^3+c^3\le\sqrt{3}\left(a^2+b^2+c^2\right)=3\sqrt{3}\)

\(A_{max}=3\sqrt{3}\) khi \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và các hoán vị

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Carat
Xem chi tiết
Carat
Xem chi tiết
missing you =
Xem chi tiết
trương khoa
23 tháng 5 2021 lúc 11:33

,

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 11:54

Ngắn gọn thì đây là 1 bài toán không giải được (min max tồn tại, nhưng không thể tìm được)

Cực trị xảy ra tại \(x=\dfrac{a}{b}\) là nghiệm của pt bậc 4:

\(7x^4+11x^3-3x^2-4x-2=0\)

Là một pt không thể phân tích về các pt bậc thấp hơn

Nguyễn Việt Lâm
23 tháng 5 2021 lúc 12:12

Nếu sửa đề thế này thì có thể quy về 1 biến khá đơn giản:

\(3-ab=a^2+b^2\ge2ab\Rightarrow ab\le1\)

\(3-ab=a^2+b^2\ge-2ab\Rightarrow ab\ge-3\)

\(\Rightarrow-3\le ab\le1\)

\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)

Đặt \(ab=x\Rightarrow-3\le x\le1\)

\(P=-x^2-7x+9=\left(-x^2-7x+8\right)+1=1+\left(1-x\right)\left(x+8\right)\ge1\)

\(P=\left(-x^2-7x-12\right)+21=21-\left(x+3\right)\left(x+4\right)\le21\)

Lizy
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 22:25

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

Đinh Đức Hùng
Xem chi tiết
Minz Ank
Xem chi tiết
Trần Tuấn Hoàng
28 tháng 5 2023 lúc 20:15

*Tìm min:

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)

\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)

\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3

*Tìm max: \(a,b\ge0\)

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)

\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)

\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)

Vậy maxP=1