A(x)=2x^2 -4x-3
tìm min
(x2 +2x)2 - 2x2 -4x=3
tìm x
\(\Leftrightarrow\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
\(\Leftrightarrow\left(x^2+2x-3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=-1\end{matrix}\right.\)
chỉ mình câu này với
rút gon biểu thức A= x^2+2x/ x^2-4x+4 : ( x+2/x-1/2-x+6-x^2/x^2-2x) với x khác 0,2,-2
rút gọn A
tính giá trị của A biết I 2x +1 I =3
tìm x để A<0 , tìm giá trị x nguyên để A nhận giá trị nguyên , tìm gía trị nhỏ nhất của với x>2
cho hàm số f(x)=2x2+x-3
tìm \(\lim\limits_{x\rightarrow+\infty}\)\(\dfrac{\sqrt{f\left(x\right)}+\sqrt{f\left(4x\right)}+\sqrt{\left(4^2x\right)}+...+\sqrt{f\left(4^{2018}x\right)}}{\sqrt{f\left(x\right)}+\sqrt{f\left(2x\right)}+\sqrt{\left(2^2x\right)}+...+\sqrt{f\left(2^{2018}x\right)}}\)=\(\dfrac{a^{2019}+b}{c}\) với a,b,c là ba số nguyên dương và b<2019.Tính S=a+b-c
tìm max hoặc min a=2x^2-4x+7/x^2-2x+2
2x +2x+1+2x+2=960-2x+3
tìm x
\(2^x+2^{x+1}+2^{x+2}=960-2^{x+3}\)
\(\Leftrightarrow2^x+2^{x+1}+2^{x+2}+2^{x+3}=960\)
\(\Leftrightarrow2^x\left(1+2+2^2+2^3\right)=960\)
\(\Leftrightarrow2^x.15=960\)
\(\Leftrightarrow2^x=64\)
\(\Leftrightarrow2^x=2^6\Leftrightarrow x=6\)
Vậy...
Tìm Min Max nếu có của
A=(x^2+3x+2)/(x^2+2x+1)
B=(4x^2+4x-7)/(x^2-4x+4)
C=(3x+2)/(x^2-2x+1)
Cho đa thức.f (x)=2x + \(a^2\) - 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Giải chi tiết:
a) Đa thức f(x) có nghiệm là –2 nên f(–2) = 0
⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.
Vậy đa thức f(x) có nghiệm là –2 thì c=−14c=−14.
b) Đa thức g(x) có nghiệm là x1=1; x2=2x1=1; x2=2 nên g(1) = 0; g(2) = 0
⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2
Vậy đa thức g(x) có hai nghiệm là x1=1; x2=2x1=1; x2=2 thì a=−3; b=2.a=−3; b=2.
c) Ta có: f(x)=2x2−3x−14; g(x)=x2−3x+2.f(x)=2x2−3x−14; g(x)=x2−3x+2.
h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4
Vậy tập nghiệm của đa thức h(x) là {4;−4}
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
TK
Phương pháp giải:
- Đa thức f(x) có nghiệm là –2 nên f(–2) = 0, từ đó ta tìm được c.
- Đa thức g(x) có nghiệm là x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.
- Giải h(x) = 0 để tìm nghiệm của h(x).
Cho đa thức.f (x)=2x +\(a^2\)- 3Tìm a để f ( x) có nghiệm:
a) x=1 b) x=\(\dfrac{-1}{2}\)
f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).
a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.
b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.
a: A=x^2-2x+1+4
=(x-1)^2+4>=4
Dấu = xảy ra khi x=1
b: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
c: =2x+8-x^2-4x
=-x^2-2x+8
=-x^2-2x-1+9
=-(x^2+2x+1)+9
=-(x+1)^2+9<=9
Dấu = xảy ra khi x=-1
d: =x^2-2xy+y^2+4y^2+4y+1+2
=(x-y)^2+(2y+1)^2+2>=2
Dấu = xảy ra khi x=y và 2y+1=0
=>x=y=-1/2