Cho tam giác ABC có BC= 5√5, AC=5√2, AB= 5. TÍNH ^A
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
em mới học lớp 7 hà
năm nay lên lớp 8 =)))))
1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)
\(\Leftrightarrow\sin A=0,8\)
Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)
Áp dụng định lí hàm số cosin:
\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)
\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)
\(\Leftrightarrow BC=\sqrt{17}.\)
2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)
=> BAC=75o.
Áp dụng định lí hàm số sin:
\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)
\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
Bài 1) Cho tam giác ABC có AB=13, AC=5, BC=9.Tính các đường cao của tam giác ABC.
Bài 2) Cho tam giác ABC có AB=12, AC=20, BC=16.Tính đường cao BH.
áp dụng định lí Py ta go bạn nhé
Cho tam giác ABC có AB = 5cm , AC = 5cm , BC = 5 căn bậc 2 cm
a) Và từ tam giác trên chứng minh tam giác ABC vuông tại A
b) trên nửa mặt phẳng bờ BC không chứa A dựng D sao cho CD vuông góc với BC , CD = 5 căn bậc 2 cm tính độ dài BD
a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)
\(AB^2+AC^2=5^2+5^2=50\)
Do đó: \(BC^2=AB^2+AC^2\)(=50)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
CHO TAM GIÁC ABC CÓ AB =15CM, AC= 2 PẦN 5 AB .TÍNH BC BT ĐỘ DÀI BC LÀ SỐ NGUYÊN VÀ CHIA HÊT CHO 3,5 .HỎI TAM GIÁC ABC LÀ TAM GIÁC GÌ
AC=2/5AB=6(cm)
Xét ΔABC có AB-AC<BC<AB+AC
=>15-6<BC<15+6
=>9<BC<21
mà BC chia hết cho 3,5
nên BC=15(cm)
=>BC=AB
=>ΔABC cân tại B