CM:2x+3 và 4x + 8 là 2 số nguyên tố cùng nhau (xEN*)
Bài 1: Chứng minh rằng: Hai số 2n + 5 và n + 2 là hai số nguyên tố cùng nhau.
Bài 2: Chứng minh rằng: Hai số 5n + 7 và 7n + 10 là hai số nguyên tố cùng nhau.
Bài 3: Tìm số nguyên tố p sao cho: p + 4 và p + 8 cũng là các số nguyên tố.
Bài 4: Cho p và p + 4 là số nguyên tố (p > 3). Chứng minh rằng: p + 8 là hợp số.
Bài 5: Tìm các số tự nhiên x và y sao cho: (2x – 1).(y + 3) = 12.
Bài 6: Tìm hai số nguyên tố có tổng bằng 309.
Bài 7: Cho hai số nguyên tố cùng nhau a và b. Chứng tỏ rằng: 11a + 2b và 18a + 5b hoặc là nguyên tố cùng nhau hoặc có một ước chung là 19.
Tím số nguyên x, biết rằng: / x-8/+/x-12/+/x-20/=-4x
Cho số tự nihieenn. Chứng tỏ rằng 3n+2 và 5n+3 là hai số nguyên tố cùng nhau.
Đặt d là ƯC của 3n+2 và 5n+3 => 3n+2 và 5n+3 cùng chia hết cho d
=> 5(3n+2)=15n+10 chia hết cho d và 3(5n+3)=15n+9 chia hết cho d nên
5(3n+2)-3(5n+3)=1 cũng chia hết cho d => d là ước của 1 => d=1
=> 3n+2 và 5n+3 là hai số nguyên tố cùng nhau
x+8/2x-5 là số nguyên tố(xeN*)
\(\frac{x+8}{2x-5}\)là số nguyên tố khi và chỉ khi x + 8 chia hết cho 2x - 5
Ta thấy: x + 8 chia hết cho 2x - 5 <=> 2(x + 8) chia hết cho 2x - 5
=> 2x - 5 + 21
=> 2x - 5 chia hết cho 2x - 5 và 21 chia hết cho 2x - 5
=> 2x - 5 \(\in\)Ư(21) ={1;3;7}
=> x = 3;4;6
=> Số nguyên tố = 11;2 khi x = 3;6
Chứng tỏ : 2x + 5 và 3x + 8 là hai số nguyên tố cùng nhau với mọi số tự nhiên x
Gọi d=ƯCLN(2x+5;3x+8)
=>\(\left\{{}\begin{matrix}2x+5⋮d\\3x+8⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}6x+15⋮d\\6x+16⋮d\end{matrix}\right.\Leftrightarrow6x+15-6x-16⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(2x+5;3x+8)=1
=>2x+5 và 3x+8 là hai số nguyên tố cùng nhau
Có hai số nguyên tố cùng nhau nào mà cả hai đều là hợp số không ?
Tại sao 2 và 9 là hai số nguyên tố cùng nhau và là hợp số ?
Tại sao 8 và 15 là hai số nguyên tố cùng nhau và là hợp số ?
Mình đang gấp nhanh lên nhé. Ai làm hợp lí mình cho 3 like
chứng minh 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
Gọi ước chung của 2n + 3 và 4n + 8 là d
Ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2\left(2n+3\right)⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
4n + 6 - 4n - 8 ⋮ d
2 ⋮ d
d \(\in\) Ư(2) = {1; 2)
Nếu d = 2 ⇒ 2n + 3 ⋮ 2 ⇒ 3 ⋮ 2 (vô lí loại)
Vậy d = 1; hay 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau (đpcm)
CM : n+1 và 3.n+4 với n thuộc N là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( n+1 ; 3n+4 ) = d ( d là số tự nhiên khác 0 )
=> n+1 chia hết cho d ; 3n+4 chia hết cho d
=> 3.(n+1) chia hết cho d ; 3n+4 chia hết cho d
=> 3n+3 chia hết cho d ; 3n+4 chia hết cho d
=> 3n+4 - (3n+3) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN ( n+1 ; 3n+4 ) = 1
=> n+1 và 3.n+4 là 2 số nguyên tố cùng nhau
a) Tìm số nguyên tố P sao cho : P + 2 và P + 10 là số nguyên tố cùng nhau
b) Tìm số nguyên tố P > 2 sao cho : P + 8 và P + 22 là hai số nguyên tố cùng nhau
Ai nhanh mình tick cho mình cảm ơn nha
a, nếu P=2 => P+2=2+2=4 (loại)
nếu P=3 => P+2=3+2=5
P+10 = 3+10=13 (thỏa mãn)
nếu P>3 => P= 3k+1 hoặc 3k+2
+ P= 3k+1=>P+2=3k+1+2=3k+3=3(k+1) (loại)
+ P=3k+2=>P+10=3k+2+10=3k+12=3(k+4) (loại)
vậy P=3 thỏa mãn bài toán
chứng minh rằng 2n 3 và 4n 8 là 2 số nguyên tố cùng nhau