Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu tuananh
Xem chi tiết
123654
Xem chi tiết
Phương Nhi Nguyễn
Xem chi tiết
Hạnh Nguyễn
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Phùng Khánh Linh
4 tháng 8 2018 lúc 21:52

\(a.D=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\left(a>0\right)\)

\(b.D=2\Leftrightarrow a-\sqrt{a}-2=0\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\Leftrightarrow a=4\left(TM\right)\)

\(c.D=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)>0\left(a>1\right)\)\(\Rightarrow D=\left|D\right|\)

Cát Cát Trần
Xem chi tiết
Akai Haruma
30 tháng 10 2020 lúc 16:59

Lời giải:
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+....+\frac{1}{\sqrt{2004}}\)

Xét số hạng tổng quát: \(\frac{1}{\sqrt{n}}\) ta có:

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}> \frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2(\sqrt{n+1}-\sqrt{n})}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}=2(\sqrt{n+1}-\sqrt{n})\)

Do đó:

\(\frac{1}{\sqrt{1}}> 2(\sqrt{2}-\sqrt{1})\)

\(\frac{1}{\sqrt{2}}> 2(\sqrt{3}-\sqrt{2})\)

\(\frac{1}{\sqrt{3}}> 2(\sqrt{4}-\sqrt{3})\)

............

\(\frac{1}{\sqrt{2004}}> 2(\sqrt{2005}-\sqrt{2004})\)

Cộng theo vế:
$A>2(\sqrt{2005}-1)>86$

Vậy..........

Khách vãng lai đã xóa
nguyen ha giang
Xem chi tiết
tien nguyen van
Xem chi tiết
kiều nguyễn hoàng minh
26 tháng 8 2017 lúc 19:41

\(\sqrt{2}\)+3=3+\(\sqrt{2}\)

\(\sqrt{3}\)+2=2+\(\sqrt{3}\)

\(\Rightarrow\)\(\sqrt{2}\)+3>\(\sqrt{3}\)+2

Trà My
Xem chi tiết