Mấy bạn giúp mình bài này ạ ^^
Cho tam giác ABC vuông tại A. AM là đường trung tuyến. K là điểm đối xứng với A qua M. Q là điểm đối xứng với A qua BC. H là giao điểm của BC và QA.
a. CM: ABKC là hình chữ nhật.
b. CM: Tam giác ACQ cân tại C.
Cho tam giác ABC vuông cân tại A, đường trung tuyến AM. Vẽ điểm H đối xứng với M qua AB, E là giao điểm của MH và AB. Vẽ điểm K đối xứng với M qua AC , F là giao điểm của MK và AC
a) AEMF, AMBH, AMCK là hình gì ?
b) Chứng minh rằng H đối xứng với K qua A <phần này các bạn giải giúp mình chi tiết vào nhé...~.~>
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
mn giúp với ạ:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi H là điểm đối xứng với M qua AB, E là giao điểm của Mh và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a, Xác định dạng của tứ giác AEMF, AMBH, AMCK.
b, Chứng minh rằng H đối xứng với A qua K
c, Tam giác ABC có thêm điều kiện gì thì AEMF là hình vuông?
cho tam giác ABC vuông tại A, đường trung tuyến Am. gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC
a. xác định dạng của tứ giác AEMF, AMBH, AMCK
b. chứng mình rằng H đối xứng với K qua A
c. tâm giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng vớ M qua AB, E là giao điểm của MH và AB. Gọi L là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.
b) Chứng minh H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông ?
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.
Mn giúp mik vs mik đag cần gấp ạ
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC, K là điểm đối xứng với A qua M.
a) Chứng minh tứ giác ABKC là hình thoi.b) Tam giác ABC cần thêm điều kiện gì thì tứ giác ABKC là hình vuông?c) Qua A kẻ đường thẳng song song với BC, đường thẳng này cắt đường thẳng CK tại D. Chứng minh AD = BC.d) Cho biết AD = 6cm, AK = 8cm. Tính đường cao AH của tam giác ADK.a: Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
AB=AC
Do đó: ABKC là hình thoi
b: Để ABKC là hình vuông thì góc BAC=90 độ
c: Xét tứ giác ABCD có
AB//CD
AD//BC
=>ABCD là hình bình hành
=>AD=BC
Cho tam giác ABC cân tại A. Gọi M là điểm đối xứng với A qua BC, H là giao điểm của AM và BC.
a) CM: tứ giác ABMC là hình thoi.
b) Gọi K là trung điểm của AC. Lấy điểm I đối xứng với H qua K. Chứng minh tứ giác AICH là hình chữ nhật.
c) Gọi D là trung điểm của AB. Chứng minh: 3 đường thẳng AH, BI, DK đồng qui.
a: M đối xứng A qua BC
nên BC là trung trực của AM
=>BA=BM; CA=CM
mà BA=CA
nên BA=BM=CA=CM
=>ABMC là hình thoi
b: Xét tứ giác AHCI có
K là trung điểm chung của AC và HI
góc AHC=90 độ
Do đó: AHCI là hình chữ nhật
c: Xét ΔBAC có CH/CB=CK/CA
nen HK//AB và HK=AB/2
=>HK//AD và HK=AD
=>ADHK là hình bình hành
=>AH cắt DK tại trung điểm của mỗi đường(1)
Xét tứ giác AIHB có
AI//HB
AI=HB
Do đó: AIHB là hình bình hành
=>AH cắt IB tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AH,IB,DK đồng quy
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC, K là điểm đối xứng với A qua M.a) Chứng minh tứ giác ABKC là hình thoi.b) Tam giác ABC cần thêm điều kiện gì thì tứ giác ABKC là hình vuông?c) Qua A kẻ đường thẳng song song với BC, đường thẳng này cắt đường thẳng CK tại D. Chứng minh AD = BC.d) Cho biết AD = 6cm, AK = 8cm. Tính đường cao AH của tam giác ADK.
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi
Cho tam giác ABC vuông tại A. AE là đường trung tuyến. Gọi M là điểm đối xứng của E qua AB, I là giao điểm của AB và ME, N đối xứng E qua AC, K là giao điểm AC và NE. a) Chứng minh AE = IK b) Chứng minh M đối xứng N qua A. Vậy thôi ạ, giúp mình với, mai mình thi học kỳ rồi :(
a: E đối xứng M qua AB
nên AB là trung trực của ME
=>AB vuông góc với ME tại trung điểm của ME
=>AB là phân giác của góc EAM(1)
E đối xứng N qua AC
nên AC là trung trực của NE
=>AC vuông góc với NE tại trung điểm của NE
=>AC là phân giác của góc EAN(2)
Xét tứ giác AIEK có
góc AIE=góc AKE=góc KAI=90 độ
nên AIEK làhình chữ nhật
b: Từ (1), (2) suy ra góc NAM=2*90=180 độ
=>N,A,M thẳng hàng
mà AM=AN
nên A là trung điểm của MN