Cho \(\Delta\)ABC vuông tại A. Vẽ AH\(\perp\)BC. Gọi AD là tia phân giác của ^HAC
a) CT ^BAD = ^BDA
b) Cho ^C = 40°. Tính ^BDA và ^DAC
Cho tam gác ABC vuông tại A vẽ AH vuông góc với BC tia phân giác của góc BAH cắt BC tại D .a) tam giác ABD cân ; b)các tia phân giác của góc BAH và góc BHA cắt nhau tại I gọi M là trung điểm của AD: 3 điểm B;I;M thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của các góc BAH và CAH cắt BC lần lượt tại D và E. Gọi O là giao điểm các đường phân giác của tam giác ABC. Tính số đo góc DOE.
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC
b, Cho BH = 8cm, AB = 10cm. Tính AH
c, Gọi E là trung điểm của AC và G là giao điểm của BE và AH. Tính HG
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng
b, Cho BH = 8cm, AH = 10cm. Tính AH này là sao , biết AH mà còn bắt tính AH
cho tam giác ABC vuông tại A. tia phân giác của góc B cắt cạnh AC tại D
a cho biết ACB =40 ĐỘ .TÍNH số đo góc ABD
b Trên cạnh BC lấy điểm E sao cho BE=BA chứng minh tam giac BAD=BED và DE VUÔNG GÓC BC
c gọi F là giao điểm của BA VÀ ED chứng minh rằng tam giác ABC = tam giác EBF
d Vẽ CK vuông góc với BD tại K chứng minh rằng ba điểm K F C thẳng hàng
Cho tam giác ABC vuông tại A có AB=5cm, BC=10cm.
a,Tính AC
b, vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. CM: tam giac ABD=tam giác EBD và BD vuông AE
c,Gọi giao điểm của hai đường thẳng ED và BA tại F. CM: tam giác ABC = tam giác AFC
d, qua A vẽ đường thẳng song song với BC cắt C tại G. CM:B,D, G thẳng hàng
Bài 1: Cho tam giác ABC vuông tại A ( AB < AC ). Tia phân giác của góc \(\widehat{ABC}\)cắt AC ở D. Trên cạnh BC lấy điểm K sao cho AB = KB. Vẽ AH vuông góc với BC
a) Chứng minh: \(\Delta ABD=\Delta KBD\)và AD = KD
b) Chứng minh: AH // DK
c) Trên tia DK lấy điểm E sao cho AH = DE. Gọi M là trung điểm HD. Chứng minh: 3 điểm A,M,E thẳng hàng
a: Xét ΔABD và ΔKBD có
BA=BK
góc ABD=góc KBD
BD chung
Do đó: ΔABD=ΔKBD
Suy ra: DA=DK
b: Ta có: ΔBAD=ΔBKD
nên góc BKD=góc BAD=90 độ
=>DK vuông góc với BC
=>DK//AH
Cho \(\Delta ABC\)vuông tại A có AB = 3cm, BC = 5cm. Vẽ tia phân giác BD của \(\widehat{B}\left(D\in AC\right)\). Vẽ \(DE⊥BC\)
a. Tính AC và so sánh các góc của \(\Delta ABC\).
b. Chứng minh: \(\Delta BDA=\Delta BDE\)và \(\Delta BAE\)cân.
c. Chứng minh: \(DC+DB>EC+AB\)
D. Gọi M là giao điểm BD và AE. Trên CM lấy G sao cho MG = GC. Gọi N là trung điểm EC. Chứng minh: A, G, N thẳng hàng.
Cho tam giác ABC cân tại A. Gọi AD là tia phân giác của góc A ( D thuộc BC )
a) Cm tam giác ABD = tam giác ACD
b) Cho AB = AC= 5cm; BC= 6cm . Tính AD
c) Gọi M,N lần lượt là trung điểm của AB và AC. Cm MN//BC
d) Gọi O là giao điểm AD và MN. Cm tam giác AMD cân, tam giác MDN cân.
e) Cm O là trung điểm AD
f) Tính MN
P/s: Mình đang cần gấp nên không vẽ hình được! Xin lỗi!
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
2) mình làm câu a thôi nha
a) Tam giác ABC vuông tại A
Suy ra AB^2+AC^2=BC^2
AC^2=BC^2-AB^2=5^2-4^2=3^2
Suy ra AC=3 cm