So sánh:
1/2^2+1/4^2+1/6^2+1/8^2+...+1/(2.n)^2 với 1/2
júp mik với
so sánh: 1/4^2+1/6^2+1/8^2+...+1/2006^2 với 334/2007
So sánh (2+1)(2^2+1)(2^4+1)(2^8+1) với 2^32
So sánh S với 2 biết :
S=1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8
S=1/2+1/3+1/4+1/5+1/6+1/7+1/8=
=481/280=1,717(857142)
=> S<2
So Sánh M và N biết M=1/1.5+2/5.13+3/13.25+4/25.41 N=2/1.7+3/7.16+4/16.28+5/28.43+6/43.61 giúp mik với,bây giờ mik đang cần gấp
M=1/4(4/1*5+8/5*13+12/13*15+16/25*41)
=1/4(1-1/5+1/5-1/13+...+1/25-1/41)
=1/4*40/41=10/41
N=1/3(6/1*7+9/7*16+...+18/43*61)
=1/3(1-1/7+...+1/43-1/61)
=1/3*60/61=20/41
=>M<N
so sánh 1/2^2+1/3^2+1/4^2+...+1/2013^2 và 2014/2013
Giúp mik với
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
............
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1\)
Mà \(\frac{2014}{2013}>1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{2014}{2013}\)
1)Tính tổng:a)3+3/5+3/25+3/125+3/625
b)M=4/3.7+4/7.11+4/11.15+...+8/95.99
c)N=1/2+1/6+1/12+1/20+...+1/90
2)Cho K=1+1/3+1/1/6+1/10+...+1/45 so sánh K với 2
Ta có ; K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{90}\)
\(=1+\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{9.10}\right)\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=1+1-\frac{1}{5}\)(nhân phá ngoặc)
\(=2-\frac{1}{5}\)< 2
Vậy K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)< 2
A=1+1/2+2/3+3/4+......+99/100 so sánh với B=100-(1/2+1/3+1/4+......+1/100)
giúp mik với
ta có
\(B=1+\left(1-\frac{1}{2}\right)+..+\left(1-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=A\)
Vậy A=B
Với mọi số tự nhiên n > hoặc = 2, hãy so sánh:
a) A=1/22+1/321/42+..............+1/n2 với 1.
b) B=1/22+1/42+1/62+................+1/(2n)2 với 1/2.
GIÚP MÌNH VỚI ! ! ! !
so sánh
1+2+1+3+1+4+...+1+100 với 1+3+5+7+9+...+301
1+3+5+7+9+...+3999 với 2+4+6+8+...+3998+1,25
1 + 2 + 1 + 3 + 1 + 4 + .. + 1 + 100
= 99 x 1 + ( 2 + 3 + 4 + ... + 100 )
= 5148 ( 1 )
1 + 3 + 5 +7 + ... + 301
= \(\frac{\left[\left(301-1\right):2+1\right].\left(301+1\right)}{2}\)
= 22801 (2)
Từ ( 1) và (2) => 1+3+ ....+ 301 > 1+2+1+3+1+4 +...+ 1 + 100
b) làm tương tự
Câu đầu bé theo linh cảm thôi
Câu hai:Lớn vì phép đầu với phép hai ko có số 1,25 là bằng nhau nhưng lại có.
b)
1 + 3 + 5 + .. + 3999
= 7998000 (3)
cách làm như ý a
2 + 4 + 6 +... + 3998 + 1,25
= 7994000 + 1,25 (4)
Từ (3) và (4) => 1 + 3 + .. + 3999 > 2 + 4 + .. + 3998 +1,25