cho tam giác ABC co góc B=góc C = 50 độ. qua A kẻ xy song song BC. tinh các góc ở đỉnh A
Cho tam giác ABC có góc B = 50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E
a) Chứng minh: Tam giác AEB là tam giác cân
b) Tính góc BAE
a) BE là phân giác ABC => ABE = CBE
AE //BC => AEB = CBE (so le trong)
=> ABE = AEB
=> tam giác BAE cân tại A ( đpcm)
b) Có: ABE = CBE = ABC : 2 = 50o : 2 = 25o
Tam giác BAE cân tại A có: BAE = 180o - 2.ABE
= 180o - 2.25o = 130o
Cho tam giác ABC có góc B = 50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E
a) Chứng minh: Tam giác AEB là tam giác cân
b) Tính góc BAE
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50o/2
=> 2.ABE=2.CBE=ABC=50o
Tam giác ABE cân tại A có: BAE=180o-2.ABE=180o-50o=130o
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50
o/2
=> 2.ABE=2.CBE=ABC=50
o
Tam giác ABE cân tại A có: BAE=180
o-2.ABE=180
o-50
o=130
chúc bn hok tốt @_@
Cho tam giác ABC có góc A = 90 độ . Qua đỉnh B của tam giác kẻ đường thẳng xy vuông góc với cạnh AB .
a, Chứng minh rằng xy song song với AC .
b, Biết góc CBy = 35 độ . Tính số đo các góc còn lại của tam giác.
c,Tia phân giác của góc a cắt BC tai D . Tính số đo góc ADC
Các bn giúp mh nha , mh cần gấp lắm , khoảng 7h 30 tối nay nha
Ta có hình vẽ:
a) Vì \(\begin{cases}AB\perp AC\\AB\perp xy\end{cases}\)=> AC // xy (đpcm)
b) Ta có: ABC + CBy = 90o
=> ABC + 35o = 90o
=> ABC = 90o - 35o = 55o
ACB = CBy = 35o (so le trong)
c) Vì AD là phân giác của góc BAC nên BAD = CAD = \(\frac{BAC}{2}=\frac{90^o}{2}=45^o\)
Xét Δ ADC có: DAC + ADC + DCA = 180o (tổng 3 góc của Δ)
=> 45o + ADC + 35o = 180o
=> ADC + 80o = 180o
=> ADC = 180o - 80o = 100o
cho tam giác abc cân tại a . qua a kẻ đường thẳng xy song song với bc . các đường phân giác của góc b và c cắt xy lần lượt tại e và d . chứng minh
a,ax là phân giác góc ngoài đỉnh a của tam giác abc
b, ad = ae
a, Do DE//BC
=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )
Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC
=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)
Do \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )
\(\Rightarrow\widehat{A_2}=\widehat{ACB}\)
Mà góc ABC = góc ACB ( tam giác ABC cân ở A )
=> \(\widehat{A_1}=\widehat{A_2}\)
=> Ax là tia phân giác góc BAz
Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC
b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)
Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)
\(\Rightarrow\widehat{A_1}=\widehat{CAE}\)
\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Vì góc ABC = góc ACB ( tam giác ABC cân )
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác DAC và tam giác EAB có:
\(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )
AC = AB ( tam giác ABC cân )
\(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )
=> \(\Delta DAC=\Delta EAB\)( g-c-g )
=> DA = EA
1 Cho tam giác nhọn abc kẻ bh vuông góc vs ac kẻ ck vuông góc vs ab . so sánh góc abh vs góc ack
2 cho tam giác abc có b=c=50 độ kẻ tia Ax là pg của góc ngoài tại đỉnh a . Cmr ax song song vs bc
3 cho tam giác abc có b-c=20 độ tia pg của a cắt b,c ở d tính góc adc và adb
Giúp mik nha đag cần gấp
Cho tam giác ABC có góc B bằng 50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E : a,chứng minh tam giác AEB là tam giác cân b, tính gocs BAE
Bài 1: Cho tam giác ABC có góc B=50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E.
a/ CM: Tam giác ABC cân.
b/ Tính góc BAE.
Bài 2: Cho tam giác cân ABC (AB=AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE. Gọi M là trung điểm của BC. CMR:
a/ DE song song BC
b/ Tam giác MBD=tam giác MCE
c/ Tam giác AMD=tam giác AME
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o
Cho tam giác ABC có góc A = 80 độ góc B bằng 50 độ Gọi Ax là tia đối của AB là tia phân giác của góc xAC
a)Tính số đo các góc ACB ; CAx và chứng minh Ay song song với BC
b)Từ C kẻ tia CT song song AB ; tia Ct cắt Ay tại E. Tính số đo các góc của tam giác AEC
c)Qua B kẻ đường thẳng a vuông góc BC từ A kẻ AD vuông góc a tại D .Chứng minh ba điểm E;A;D thẳng hàng
Ta có : góc A + góc B +góc C = 180 ( Định lý tổng 3 góc của 1 tam giác )
80 + 50 + góc C = 180
=> góc C = 180 -80 -50 = 50
Ta có: góc BAC + góc CAx = 180 ( kề bù )
80 + góc Cax = 180
=> Góc Cax = 100
Vì AI là tia phân giác của Góc CAx => góc CAy = góc yAx
=> góc CAy = Góc CAx / 2 =100/2 = 50
Ta có ( góc yAC + góc CAB ) + góc BAC = 180 ( ở vị trí trong cùng phía )
Suy ra Ay // BC ( đpcm)
Cho tam giác ABC có góc A = 70 độ , góc B = 50 độ . Lấy điểm D nằm giữa B và C . Đường thẳng qua D song song với AB cắt AC tại E . Đường thẳng qua D song song với AB tại F . Chứng minh rằng :
a) AE = DF , AF = DE .
b) Tìm số đo các góc ở đỉnh D .
c) So sánh FD và BC ; ED và DC