cmr n^2+n chia het cho 2
2
a) CMR: (n+1)*(n+8) chia het cho 2 voi n thuoc N
b) CMR: n^2+n chia het cho 2
a)
Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n = 0 => 1 x 8 = 8 chia hết cho 2
b)
n^2 + n = n x ( n + 1 )
mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2
a) \(A=\left(n+1\right)\left(n+8\right)\)
Nếu: \(n=2k\)thì: \(A\)\(⋮\)\(2\)
Nếu: \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(A\)\(⋮\)\(2\)
Vậy A chia hết cho 2
b) \(B=n^2+n=n\left(n+1\right)\)
Nếu: \(n=2k\)thì: \(B\)\(⋮\)\(2\)
Nếu \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(B\)\(⋮\)\(2\)
Vậy B chia hết cho 2
CMR vs moi n thuoc N
a, n+2.n+7 chia het cho 2
b, 2(n+1).(n+2) chia het cho 2 va 3
c, n(n+1).(2n+1) chia het cho 2 va 3
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
1.CMR với moi n nguyên thi n^2+2 ko chia het cho 4
2.Tim chu so a va b biet :5a31b chia het cho 15 va a378b chia het cho 72
Biet 2^n-1 chia het cho 7. CMR 2^n+1 khong chi het cho 7.
Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2
=> 2n+1 khong chia het cho 7
CMR voi moi n thuoc N
a, a+2.a+7 chia het cho 2
b, n(n+1).(n+2) chia het cho 2 va 3
c, n(n+1).(2n+1) chia het cho 2 va 3
Các pn lam giúp mk với mk dang mải
cmr
94260 -35137 chia het cho 5
995-984+973-962 chia het cho 2 va 5
bai 2:
cho n thuoc N cmr 5n -1 chia het cho 4
cmr n^2+n chia het cho 2
\(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 tự nhiên liên tiếp
nên \(⋮2\)
CMR:
a) 2n-1 chia het cho n+1
b) 3n+2 chia het cho n-1