CMR: \(\frac{15n+1}{30n+1}\)là phân số tối giản.
chứng minh\(\frac{30n+1}{15n+2}\)là phân số tối giản
Gọi d là ƯC ( 30n + 1 ; 15n + 2 )
=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d
=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d
=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d
=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d
=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }
Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản
\(\frac{30n+1}{15n+2}\Leftrightarrow\left(30n+1;15n+2\right)=1\)
Đặt \(\left(30n+1;15n+2\right)\) = d
\(\Leftrightarrow d=4\)
=> tối giản
cmr phân số sau tối giản
15n+1/30n+1
5n+3/3n+2
2n+3/4n+8
gọi ƯCLN là d.Ta có 15n+1chia hết cho d và 30n+1 cũng chia hết cho n =>nhân 15n +1 cho 2 thì ta có:
30n+1-30n+2=-1 sẽ chia hết cho d
=>d là ước của -1.=>d = 1;-1.VÌ d là ƯCLN nên d = 1
Vì ƯCLN của 15n+1/30n+1 là 1 nên ps đó tg
****mấy câu khác cũng làm tương tự.CÂU THỨ 2 THI NHÂN TỬ CHO 3 VÀ nhân MẪU CHO 5.CÂU THỨ 3 NHÂN tử cho 2**
6) Tính giá trị biểu thức:a) Tìm nguyên để:
A=\(\frac{2n+5}{n-1}nguyên\)
b)CMR phân số:
\(\frac{30n+27}{15n+13}\)tối giản
a, \(A=\frac{2n+5}{n-1}=\frac{2n-2+7}{n-1}=\frac{2\left(n-1\right)+7}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{7}{n-1}=2+\frac{7}{n-1}\)
Để A nguyên <=> n - 1 thuộc Ư(7) = {1;-1;7;-7}
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
Vậy...
b, Gọi d là UCLN(30n+27,15n+13)
Ta có: 30n + 27 chia hết cho d
15n + 13 chia hết cho d => 2(15n+13) chia hết cho d => 30n+26 chia hết cho d
=> 30n+27 - (30n+26) chia hết cho d
=> 30n+27 - 30n-26 chia hết cho d
=> 1 chia hết cho d => d = {1;-1}
Vậy \(\frac{30n+27}{15n+13}\)tối giản
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a) \(\dfrac{5n+3}{3n+2}\)
b) \(\dfrac{15n+1}{30n+1}\)
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
CMR \(\frac{12n+1}{30n+2}\)là phân số tối giản
chứng tỏ rằng:
a) 15n+1/ 30n+1 là phân số tối giản (n thuộc Z )
b) n3+2n/n4+3n2+1 là phân số tối giản ( n thuộc Z )
chứng tỏ rằng với các số nguyên n, các phân số sau là phân số tối giản
a) 15n + 1/ 30n + 1
b) 2n + 3/ 4n + 8
a) Đặt ( 15n+1 ; 30n+1 )=d
=>15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+2 chia hết cho d
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>15n+1 và 30n+1 nguyên tố cùng nhau
=>\(\frac{15n+1}{30n+1}\) tối giản
b)Đặt ( 2n+3;4n+8)=d
=>2n+3 chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d= 1 hoặc 2
Mà 2n+3 là số lẻ
=>d khác 2
=>d=1
=>2n+3 và 4n+8 nguyên tố cùng nhau
=>\(\frac{2n+3}{4n+8}\) tối giản
k cho mk nhé
CMR
\(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d = ( 12n+1 , 30n + 2)
Ta có: 12n+ 1 chia hết cho d 5(12n +1) chia hết cho d 60n +5 chia hết cho d
=> =>
30n+ 2 chia hết cho d 2(30n + 2 ) chia hết cho d 60n ++ 4 chia hết cho d
=> (60n +5 ) - ( 60n + 4 ) chia hết cho d => 1 chia hết ch d => d = 1
Vậy phân số đó tối giản
k mình nha
Chứng tỏ rằng các phân số sau đây là phân số tối giản
a,5n+3/3a+2
b,15n+1/30n+1(mọi n ϵ N)
Toán lớp 6 đó các bạn
Giải nhanh giùm mình nhé!
dễ ẹc đưa 500 nghìn đồng cho tớ đi tớ giải cho