Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Linh
Xem chi tiết
Lê Thành Đạt
Xem chi tiết
Akai Haruma
31 tháng 5 lúc 16:19

Lời giải:

Tổng 10 phân số đầu tiên là:
$\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}+\frac{5}{204}+.....+\frac{10}{2679}$

$=\frac{1}{2.3}+\frac{2}{3.5}+\frac{3}{5.8}+\frac{5}{8.12}+\frac{5}{12.17}+\frac{6}{17.23}+\frac{7}{23.30}+\frac{8}{30.38}+\frac{9}{38.47}+\frac{10}{47.57}$

$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{47}-\frac{1}{57}$

$=\frac{1}{2}-\frac{1}{57}=\frac{55}{114}$

 

Đinh Tuấn Việt
Xem chi tiết
Trần Thị Loan
18 tháng 7 2015 lúc 14:27

Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)

=> Số hạng  thứ 98 là : \(\frac{99^2}{98.100}\)

=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)

doremon
18 tháng 7 2015 lúc 14:30

Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)

=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)

Vậy ta cần tính tích:

A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)

   = \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)

   =\(\frac{99.2}{1.100}=\frac{99}{50}\)

Mạnh Lê
26 tháng 3 2017 lúc 10:30

Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).

Tiểu thư họ Đoàn
Xem chi tiết
Nguyễn Hoàng Minh Nguyên
26 tháng 8 2017 lúc 15:47

1)55=4+5+6+7+8+9+10+11

Hoàng Thị Thanh Trúc
26 tháng 8 2017 lúc 17:12

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

Tiểu thư họ Đoàn
Xem chi tiết
Ben 10
26 tháng 8 2017 lúc 20:23

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

PhanTranNgocThao
Xem chi tiết

ko ghi lại đề bài 

=1/1-1/2+1/2-1.3+...+1/99-1/100

=1/1-1/100

=99/100

hc tốt

ko ghi lại đề 

=1/1-1/2+1/2-1/3+...+1/99-1/100

=1/1-1/100

=99/100

Phạm Hoàng Lan
13 tháng 6 2019 lúc 11:19

 A=1-1/2+1/2-1/3+...+1/99-1/100

A=1-1/100

A=99/100

Đào Trí Bình
Xem chi tiết
Lê Song Phương
10 tháng 7 2023 lúc 17:55

a) Ta viết lại dãy đã cho thành \(1\dfrac{1}{3},1\dfrac{1}{8},1\dfrac{1}{15},...\)

 Ta có thể thấy mẫu số của phần phân số trong các hỗn số của dãy là dãy các tích của 2 số cách nhau 2 đơn vị kể từ \(1.3\). Chẳng hạn \(3=1.3\)\(8=2.4\)\(15=3.5,...\) Do đó ta rút ra công thức số hạng tổng quát của dãy là \(u_n=1\dfrac{1}{n\left(n+2\right)}\)\(1+\dfrac{1}{n\left(n+2\right)}=\dfrac{n^2+2n+1}{n\left(n+2\right)}=\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)

 b) Ta cần tính \(u_1.u_2...u_{98}\). Ta thấy rằng 

\(u_1.u_2...u_{98}\) \(=\dfrac{\left(1+1\right)^2}{1.3}.\dfrac{\left(2+1\right)^2}{2.4}.\dfrac{\left(3+1\right)^2}{3.5}...\dfrac{\left(98+1\right)^2}{97.99}\) \(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{6^2}{4.6}...\dfrac{98^2}{97.99}.\dfrac{99^2}{98.100}\) \(=\dfrac{2.99}{100}=\dfrac{99}{50}\)

Lê Song Phương
10 tháng 7 2023 lúc 17:57

Chỗ này mình bị thiếu dấu "=" 

Nguyễn Đức Trí
10 tháng 7 2023 lúc 18:39

a) \(1\&\dfrac{1}{1.3};1\&\dfrac{1}{2.4};1\&\dfrac{1}{3.5};1\&\dfrac{1}{4.6};...1\&\dfrac{1}{n.\left(n+2\right)}\left(n\in\right)N^{\cdot}\)

b) \(\dfrac{1}{1.3}.\dfrac{1}{2.4}.\dfrac{1}{3.5}.\dfrac{1}{4.6}....\dfrac{1}{98.100}\)

\(=\dfrac{1}{1.2.3...97}.\dfrac{1}{3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{97!}.\dfrac{1.2}{1.2.3.4.5...97}.\dfrac{1}{98.100}\)

\(=\dfrac{1}{50.98}.\dfrac{1}{\left(97!\right)^2}=\dfrac{1}{4900.\left(97!\right)^2}\)

tran khac hap
Xem chi tiết
Nguyễn Công Hoàng Tử
7 tháng 10 2021 lúc 15:53

sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

Khách vãng lai đã xóa
tran khac hap
Xem chi tiết
Nguyễn Huy Tú
15 tháng 7 2016 lúc 14:35

Dãy 1:

Giải:

Số hạng thứ 100 của dãy là:

2+(100-1).3=299

Tổng của dãy số trên là:

(299+2).100:2=15050

Vậy tổng của dãy 1 là 15050

Linh Kute
15 tháng 7 2016 lúc 14:38

B1 Tìm số  thứ 100 theo công thức sau đó bạn tính số các số hạng 

B2 Áp dụng công thức tính tổng các ssos hạng  (số cuối + số đầu ) . số cacs số hạng 

                                       xong đơn giản mà  ( dãy 1 )

Nguyễn Huy Tú
15 tháng 7 2016 lúc 14:42

dãy 2:

Giải:

Số hạng thứ 103 của dãy là:

3+(103-1).4=411

Tổng của dãy số 2 là:

(411+3).103:2=21321

Vậy tổng của dãy 2 là 21321