(\(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\))(\(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\))
(\(\frac{1}{21}\)+\(\frac{1}{210}\)+\(\frac{1}{2010}\))*(\(\frac{1}{3}\)-\(\frac{1}{30}\)-\(\frac{1}{5}\)-\(\frac{1}{10}\))
Ta có:
\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10}{30}-\frac{1}{30}-\frac{6}{30}-\frac{3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(\left(\frac{10-1-6-3}{30}\right)\)
= \(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\)\(\times\)\(0\)
= \(0\)
ta có \(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}=\frac{10-1-6-3}{30}=\frac{0}{30}=0\)
=>\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)x\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)=0\)
\(\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\times\left(\frac{1}{3}-\frac{1}{30}-\frac{1}{5}-\frac{1}{10}\right)\)
\(=\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\times\left(\frac{10}{30}-\frac{1}{30}-\frac{6}{30}-\frac{3}{30}\right)\)
\(=\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\times\left(\frac{10-1-6-3}{30}\right)\)
\(=\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\times\frac{0}{30}\)
\(=\left(\frac{1}{21}+\frac{1}{210}+\frac{1}{2010}\right)\times0\)
\(=0\)
tim x biết
\(\frac{x}{2010}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-.....-\frac{1}{120}=\frac{5}{8}\)
Ta có:
\(\frac{x}{2013}\)-\(\frac{1}{10}\)-\(\frac{1}{15}\)-\(\frac{1}{21}\)-...-\(\frac{1}{120}\)=\(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- (\(\frac{2}{20}\)+\(\frac{2}{30}\)+\(\frac{2}{42}\)+...+\(\frac{2}{240}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+...+\(\frac{1}{15.16}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4}\)-\(\frac{1}{10}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.\(\frac{3}{10}\)= \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)= \(\frac{5}{8}\)+\(\frac{6}{10}\)= 1
=> \(x=2013\)
Vậy \(x=2013\)
Tìm các số nguyên x biết:
a,\(\frac{5}{21}+\frac{-3}{7}< \frac{x}{21}< \frac{-2}{7}+\frac{8}{21}\)
b,\(\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}\frac{1}{3}\)
c,\(\frac{5}{3}+\frac{-14}{3}< x< \frac{8}{5}+\frac{18}{10}\)
a)\(\frac{5}{21}\)+\(\frac{-3}{7}\)<\(\frac{x}{21}\)<\(\frac{-2}{7}\)+\(\frac{8}{21}\)
\(\Rightarrow\)\(\frac{-4}{21}\)<\(\frac{x}{21}\)<\(\frac{2}{21}\)
\(\Rightarrow\)\(\frac{x}{21}\)\(\in\)\(\left\{\frac{-3}{21};\frac{-2}{21};\frac{-1}{21};\frac{0}{21};\frac{1}{21}\right\}\)
vậy x\(\in\)\(\left\{-3;-2;-1;0;1\right\}\)
mấy câu kia cs tương tự ạ
Tính giá trị biểu thức
\(1.A=\frac{1}{5}+\frac{3}{17}-\frac{4}{3}+\left(\frac{4}{5}-\frac{3}{17}+\frac{1}{3}\right)-\frac{1}{7}+\left[\frac{-14}{30}\right]\)
\(2.B=\left(\frac{5}{8}-\frac{4}{12}+\frac{3}{2}\right)-\left(\frac{5}{8}+\frac{9}{13}\right)-\left[\frac{-3}{2}\right]+\frac{7}{-15}\)
\(3.C=\frac{5}{18}+\frac{8}{19}-\frac{7}{21}+\left(\frac{-10}{36}+\frac{11}{19}+\frac{1}{3}\right)-\frac{5}{8}\)
\(4.D=\frac{1}{9}-\left[\frac{-5}{23}\right]-\left(\frac{-5}{23}+\frac{1}{9}+\frac{25}{7}\right)+\frac{50}{14}-\frac{7}{30}\)
\(5.E=\frac{1}{13}+\left(\frac{-5}{18}-\frac{1}{13}+\frac{12}{17}\right)+\left(\frac{12}{17}+\frac{5}{18}+\frac{7}{5}\right)\)
\(6.F=\frac{15}{14}-\left(\frac{17}{23}-\frac{80}{87}+\frac{5}{4}\right)+\left(\frac{12}{17}-\frac{15}{14}+\frac{1}{4}\right)\)
\(7.G=\frac{1}{25}-\frac{4}{27}+\left(\frac{-23}{27}+\frac{-1}{25}-\frac{5}{43}\right)+\frac{5}{43}-\frac{4}{7}\)
\(8.H=\frac{4}{15}-\frac{23}{28}-\left(\frac{-23}{28}+\frac{-11}{15}-\frac{29}{27}\right)-\frac{2}{27}\)
\(9.K=\frac{1}{16}-\frac{5}{21}+\left(\frac{-1}{16}+\frac{-3}{5}-\frac{-5}{21}\right)+\frac{-2}{5}+\frac{3}{4}\)
\(10.L=\frac{7}{12}+\frac{15}{14}-\left(\frac{14}{22}+\frac{-1}{14}+\frac{5}{21}\right)-\frac{-5}{21}+\frac{3}{5}\)
yutyugubhujyikiu
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
Tinh\(\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{2}{2009}+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2010}+\frac{1}{2011}}\)
Ghi lộn đề thiếu thì phải. Hình như thiếu phân số 1/2011
a.\(\frac{27}{12}+\frac{5}{21}-\frac{4}{23}+\frac{6}{21}+\frac{1}{2}\)
b.\(\frac{1}{2}+(-\frac{1}{7})-(\frac{-1}{13})+\frac{-1}{3}-(\frac{-2}{5})+\frac{-11}{21}+\frac{1}{10}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}x\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{6}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{5}{21}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{42}\cdot\frac{x}{3}=\frac{-2}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{-2}{21}\div\frac{1}{42}\)
\(\Rightarrow\frac{x}{3}=-4\)
\(\Rightarrow\frac{x}{3}=\frac{-12}{3}\)
\(\Rightarrow x=-12\)
\(1.a.\frac{3}{4}.\frac{1}{210}-\frac{1}{21}.\frac{6}{5}.\frac{1}{4}\)
\(b.\frac{85}{26}:0,185-\frac{59}{26}:0.185\)\(c.2+\frac{2}{2+\frac{2}{2+\frac{2}{2+\frac{1}{2}}}}\)
a: \(=\dfrac{1}{280}-\dfrac{1}{70}=\dfrac{1}{280}-\dfrac{4}{280}=-\dfrac{3}{280}\)
b: \(=\dfrac{200}{37}\left(\dfrac{85}{26}-\dfrac{59}{26}\right)=\dfrac{200}{37}\)
c: \(=2+\dfrac{2}{2+\dfrac{2}{2+\dfrac{2}{\dfrac{5}{2}}}}=2+\dfrac{2}{2+\dfrac{2}{2+\dfrac{4}{5}}}=2+\dfrac{2}{2+\dfrac{5}{7}}\)
\(=2+2:\dfrac{19}{7}=2+\dfrac{14}{19}=\dfrac{38+14}{19}=\dfrac{52}{19}\)