cho a,b,c,d,e nguyên dương biết a^2+b^2+c^2+d^2+e^2 chia hết cho 2. cmr a+b+c+d+e là hợp số
Cho các số nguyên dương a,b,c,d,e thỏa mãn: \(a^2+b^2+c^2+d^2+e^2\) chia hết cho 2 . Chứng tỏ rằng a+b+c+d+e là hợp số
HELP ME, PLEASE!
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
Cho các số nguyên dương a, b, c, d,e thoả mãn: \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\) chia hết cho 2.
Chứng tỏ rằng: \(a+b+c+d+e\) là hợp số
Xét \(A=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}-a-b-c-d-e=a\left ( a-1 \right )+b\left ( b-1 \right )+c\left ( c-1 \right )+d\left ( d-1 \right )+e\left ( e-1 \right )\)
Mà a , a-1 là 2 số nguyên liên tiếp
\(\Rightarrow a\left ( a-1 \right )\vdots 2\)
Theo chứng minh trên
\(\Rightarrow b\left ( b-1 \right ),c\left ( c-1 \right ), d\left ( d-1 \right ), e\left ( e-1 \right )\vdots 2\)
\(\Rightarrow A\vdots 2\) mà \(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}\vdots 2\)
\(\Rightarrow a+b+c+d+e\vdots 2\)
MÀ a,b,c,d,e nguyên dương nên \(a+b+c+d+e > 2\)
\(\Rightarrow a+b+c+d+e\) là hợp số.
Cho 6 số nguyên dương a,b,c,d,e,f thỏa mãn: a2+b2+c2 = d2+e2+f2
CMR: K = a+b+c+d+e+f là hợp số
cho các số nguyên dương a;b;c;d;e;g thoả mãn a^2+b^2+c^2=d^2+e^2+g^2. Hỏi a+b+c+d+e+g là nguyên tố hay hợp số ?
Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)
Lại có \(a^2-a=a\left(a-1\right)⋮2\)
Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)
Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)
1. Cho A ={a,b,c}, B={b,c,d}, C={b,c,e}, lựa chọn phương án đúng:
A. (A∪B)∩C=(A∪B)∩(A∪C)(A∪B)∩C=(A∪B)∩(A∪C)
B. (A∩B)∪C=(A∪B)∩C(A∩B)∪C=(A∪B)∩C
C. A∪(B∪C)=(A∪B)∩CA∪(B∪C)=(A∪B)∩C
D. A∪(B∩C)=(A∪B)∩CA∪(B∩C)=(A∪B)∩C
A đúng hay D đúng???
2. A và B là 2 tập hợp có hữu hạn phần tử và A∩B=BA∩B=B >> B có là tập con thực sự của A hay ko, tại sao???
3. Cho A là tập các số nguyên dương chia hết cho 3
B là tập hợp các số nguyên dương chia hết cho 7
C là tập hợp các số nguyên dương chia hết cho 6
D là tập hợp các số nguyên dương chia hết cho 21
E là tập hợp các số nguyên dương chia hết cho 18
Lựa chọn phương án đúng.
A. A∪C=EA∪C=E
B. A⊂CA⊂C
C. A∩C=EA∩C=E
D. A∩B=DA∩B=D
B sai ở đâu???
cho các số nguyên dương a;b;c;d;e;g thoả mãn a^2+b^2+c^2=d^2+e^2+g^2. Hỏi a+b+c+d+e+g là nguyên tố hay hợp số ?
cho cac so nguyen duong a;b;c;d;e thỏa mãn tính chất: a^2+b^2+c^2+d^2+e^2 là một số chia hết cho 2.Chứng tỏ rằng a+b+c+d+e là hợp số
Xét a^2-a = a.(a-1) chia hết cho 2
Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2
=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2
Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2
Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô
Tk mk nha
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2.
Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2
=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.
Do đó a + b + c + d là số chẵn
Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số.
Cho p là số tự nhiên lẻ và các số nguyên a,b,c,d,e sao cho a+b+c+d+e và a2+b2+c2+d2+e2 đều chia hết cho p. CMR a5+b5+c5+d5+e5-5abcde \(⋮\)p
Cho các số nguyên dương a, b, c, d, e thỏa mãn: \(\left(a^2+b^2+c^2+d^2+e^2\right)⋮2\)
Chứng tỏ rằng: a+b+c+d+e là hợp số
\(a^2-a=a.\left(a-1\right)⋮2\)
tương tự b2-b,c2-c,d2-d,e2-e
\(a^2+b^2+c^2+d^2+e^2-\left(a+b+c+d\right)⋮2\text{ mà }a^2+b^2+c^2+d^2+e^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\text{ mà }a+b+c+d\ge4\Rightarrow a+b+c+d\text{ là hợp số}\)
sao a.(a-1) chia hết cho 2 đc