Xét a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e)
\(=\) a^2+b^2+c^2+d^2+e^2 -a-b-c-d-e
\(=\)a(a-1)+b(b-1)+c(c-1)+d(d-1)
Ta có: a, a-1 là 2 số liên tiếp nên tích chúng chi hết cho 2
tương tự b,c,d,e cũng vậy
\(\Rightarrow\) \(\left\{{}\begin{matrix}a\left(a-1\right)⋮2\\b\left(b-1\right)⋮2\\c\left(c-1\right)⋮2\\d\left(d-1\right)⋮2\end{matrix}\right.\Rightarrow\)a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮\)2
\(\Rightarrow\)a^2+b^2+c^2+d^2+e^2-(a+b+c+d+e) \(⋮\)2
mà a^2+b^2+c^2+d^2+e^2 \(⋮\)2
\(\Rightarrow\)a+b+c+d+e \(⋮\)2
mà a,b,c,d,e nguyên dương
\(\Rightarrow\)a+b+c+d+e>2
\(\Rightarrow\)a+b+c+d+e là hợp số
Lưu ý: muốn chứng minh là hợp số phải chứng minh nó chia hết cho 1 số(không phải số nguyên tố)
còn nếu nó chia hết cho 1 số nguyên tố thì phải lớn hơn số nguyên tố đó
nên sau khi c/m a+b+c+d+e \(⋮\)2 , chúng ta phải c/m a+b+c+d+e>2. chứ lở nó bằng hai thì ko phải hợp số