pt da thuc thanh nhan tu
a^3-5a-14
2m^2+10m+8
a^4+64
64x^2+1
81x^4+1
pt da thuc sau thanh nhan tu
x4+x3-4x2+x+1
\(x^4+x^3-4x^2+x+1\)
\(=x^4+3x^3+x^2-2x^3-6x^2-2x+x^2+3x+1\)
\(=x^2\left(x^2+3x+1\right)-2x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)
\(=\left(x^2-2x+1\right)\left(x^2+3x+1\right)\)
\(=\left(x-1\right)^2\left(x^2+3x+1\right)\)
phan tich da thuc thanh nhan tu:x^4+x^3+2x^2+x+1
\(x^4+x^3+2x^2+x+1=x^4+x^2+x^3+x+x^2+1\)
\(=x^2\left(x^2+1\right)+x\left(x^2+1\right)+1\left(x^2+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
cái cuối là \(\left(x^2+1\right)\left(x^2+x+1\right)\)
Phan tich da thuc thanh nhan tu:
2a+6b+15c
4m^2n-8m^2n-12n
a^4-b^4
16b^4-9c^2
5a(x+y)+x+y
b: \(4m^2n-8m^2n-12n\)
\(=-4m^2n-12n\)
\(=-4n\left(m^2+3\right)\)
c: \(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(a-b\right)\left(a+b\right)\)
d: \(16b^4-9c^2\)
\(=\left(4b^2-3c\right)\left(4b^2+3c\right)\)
e: \(5a\left(x+y\right)+x+y=\left(x+y\right)\left(5a+1\right)\)
phan tich da thuc thanh nhan tu : 4x^4+4x^3+5x^2 +2x +1
phan tich da thuc thanh nhan tu :x^5+2x^4+3x^3+2x^2+2x+1
x^5+2x^4+2x^3+2x^2+2x+1
=(x^5+x^4)+(x^4+x^3)+(x^3+x^2)+(x^2+x)+(x+1)
=x^4(x+1)+x^3(x+1)+x^2(x+1)+x(x+1)+(x+1)
=(x+1)(x^4+x^3+x^2+x+1)
X^4+4x^3+5x^2+2x+1
Phan tich da thuc thanh nhan tu
phan tich da thuc thanh nhan tu
x^4+x^3+2x^2+x+1
x4+x3+2x2+x+1=x4+x3+x2+x2+x+1=(x4+x3+x2)+(x2+x+1)
=x2(x2+x+1)+(x2+x+1)
=(x2+x+1)(x2+1)
=(x^4+2x^2+1)+(x^3+x)
=(x^2+1)^2+x(x^2+1)
(x^+1)*(x^2+1+x0
4x^4+4x^3+5^2+2x+1
phan tich da thuc thanh nhan tu
4x^4+4x^3+5^2+2x+1 = (4x^4+4x^3+x^2) + (4x^2+2x) + 1 = x^2(2x+1)^2 + 2x(2x+1) + 1 = [x(2x+1)]^2 +2x(2x+1) + 1 = (2x^2+x+1)^2
nếu là 5^2 thì như tui
còn 5x^2 thì như Kami
Phan tich da thuc sau thanh nhan tu : (x+1)(x+2)(x+3)(x+4)-8
Gợi ý:
Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)
Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:
\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)
Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.
(x + 1)(x + 2)(x + 3)(x + 4) - 8
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8
= (x2 + 5x + 4)(x2 + 5x + 6) - 8
Đặt x2 + 5x + 5 = t
⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)
Thay t = x2 + 5x + 5 vào (1), ta có:
(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9
= (t - 3)(t + 3)
⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)
= (x2 + 5x + 2)(x2 + 5x + 8)
Chúc bạn học tốt !!!!!!!!
(x+1)(x+2)(x+3)(x+4)-8
= [(x+1)(x+4)][(x+2)(x+3)]-8
= (x2+4x+x+4)(x2+3x+2x+6)-8
= (x2+5x+5-1)(x2+5x+5+1)-8
= (x2+5x+5)2-12-8
= (x2+5x+5)2-9
= (x2+5x+5) -32
= (x2+5x+5-3)(x2+5x+5+3) {HĐT số 3}
= (x2+5x+2)(x2+5x+8)