P=(x/x.y+x+1)+ (y/y.z+y+1)+(z/x.z+z+1) .Biết x.y.z=1
a) Cho 3 số x,y,z biết x.y.z=1. Tính tổng: \(\frac{5}{x+x.y+1}+\frac{5}{y+y.z+1}+\frac{5}{z+z.x+1}\)
b) Cho 3 số x,y,z biết x.y.z=1992. Chứng minh: \(\frac{1992.x}{x.y+1992.x}\)+\(\frac{y}{y.z+y+1992}\)+\(\frac{z}{x.z+z+1}\)=1
1) Cho x,y,z > 0 ; x.y.z =1 . CMR :
\(\sqrt{\dfrac{1+x^3+y^3}{x.y}}+\sqrt{\dfrac{1+y^3+z^3}{y.z}}+\sqrt{\dfrac{1+z^3+x^3}{x.z}}\)≥ 3\(\sqrt{3}\)
\(\sum\sqrt{\dfrac{1+x^3+y^3}{xy}}\ge\sum\sqrt{\dfrac{3xy}{xy}}\ge3\sqrt{3}\)
chắc là bạn ghi sai đề rồi -_- ;
tim x;y;z;x va x;y;z khac 0 biet
(x.y-1)/y=(y.z-1)/z=(x.z-1)/x=1
Biết x.y.z=1
Tính A= x/x.y+x+1 +y/y.z+y+1 + z/z.x+z+1
Lời giải:
Ta có:
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )
\(A=\frac{xz+1+z}{1+xz+z}=1\)
Tìm 3 số x,y,z thuộc Z sao cho 0<x\(\le\)y \(\le\)Z và x.y+y.z+x.z=x.y.z
tìm x, y,z biết
x.y=z ; y.z=4.x ; x.z=4.y
tìm các số hữu tỉ x,y,z thỏa mãn:
a, x+y= -7/6 ;y+z =1/4 ; x+z= 1/2.
b, x.y=1/3 ;y.z= -2/5 ; x.z= -3/10
a,Ta có: x+y= -7/6 và y+z= 1/4
=>x+y+y+z= -7/6 +1/4
=>x+z+2y= -11/12
=>1/2+2y= -11/12
=>2y= -11/12 -1/2
=>2y= -17/12
=>y= -17/24
Mà x+y=-7/6 =>x= -7/6+17/24= -11/24
x+z=1/2 =>z=1/2+11/24=23/24
Ta có: \(x+y=-\frac{7}{6};y+z=\frac{1}{4};x+z=\frac{1}{2}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{2}\)
\(\Rightarrow2x+2y+2z=-\frac{28}{24}+\frac{6}{24}+\frac{12}{24}\)
\(\Rightarrow2\left(x+y+z\right)=-\frac{5}{12}\)
\(\Rightarrow x+y+z=-\frac{5}{12}:2\)
\(\Rightarrow x+y+z=-\frac{5}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+y\right)=-\frac{5}{24}+\frac{7}{6}\Rightarrow z=-\frac{5}{24}+\frac{28}{24}=\frac{23}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(y+z\right)=-\frac{5}{24}-\frac{1}{4}\Rightarrow x=-\frac{5}{24}-\frac{6}{24}=-\frac{11}{24}\)
\(\Rightarrow\left(x+y+z\right)-\left(x+z\right)=-\frac{5}{24}-\frac{1}{2}\Rightarrow y=-\frac{5}{24}-\frac{12}{24}=-\frac{17}{24}\)
Vậy \(x=\frac{23}{24};y=-\frac{17}{24};z=-\frac{11}{24}\)
Chuk pạn hok tốt!
b,Ta có: x.y=1/3 và y.z= -2/5
=>x.y.y.x=1/3.(-2/5)
=>x.z.y^2= -2/15
=>-3/10.y^2= -2/15
=>y^2=4/9
=>y=2/3
Mà x.y=1/3 =>x=1/3:2/3=1/2
x.z= -3/10 =>z= -3/10:1/2 = -3/5
Phân tích đa thức thành nhân tử
x2.y+x.y2+x2.z+x.z2+y2.z+y.z2+2.x.y.z
Tìm x,y biết
x.y = z ; y.z=4.x ; x.z = 4.y
Ta có:
x.y = z (1)
y.z = 4.x (2)
x.z = 4.y (3)
Từ (1), (2) và (3) => (x.y).(y.z).(x.z) = z.(4.x).(4.y)
=> (x.y.z)2 = 16.x.y.z
=> (x.y.z)2 - 16.x.y.z = 0
=> x.y.z.(x.y.z - 16) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x.y.z=0\\x.y.z-16=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x.y.z=0\\x.y.z=16\end{array}\right.\)
+ Với x.y.z = 0 => \(\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
+ Với x.y.z = 16 => x.y = \(\frac{16}{z}\) = z (từ (1)) => z2 = 16 => \(z\in\left\{4;-4\right\}\)
Tương tự với (2) và (3) ta được 4 cặp giá trị (x;y;z) tương ứng thỏa mãn là: (2;2;4) ; (-2;-2;4) ; (-2;2;-4) ; (2;-2;-4)
Vậy ...