Lời giải:
Ta có:
\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)
\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )
\(A=\frac{xz+1+z}{1+xz+z}=1\)