Cho tứ giác ABCD có hai đường chéo vuông góc với nhau . Chứng minh : \ (AD^2+BC^2=AB^2+CD^2\)
cho tứ giác ABCD có 2 đường chéo vuông góc với nhau. chứng minh: AD*2 + BC*2= AB*2 + CD*2
tôi chỉ thắc mắc là, ko thể vẽ hai đường chéo vuông góc được
Cho tứ giác ABCD , có hai đường chéo vuông góc với nhau . Chứng minh rằng : \(AB^2+CD^2=AD^2+BC^2\)
cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau. Gọi E,F lần lượt là trung điểm của AB, BC. Chứng minh rằng đường thẳng đi qua E vuông góc với CD, đường thẳng đi qua F vuông góc với AD và 1 trong 2 đường chéo đồng quy.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là tâm các hình vuông có cạnh AB, BC, CD, AD dựng ra phía ngoài tứ giác.
Chứng minh rằng :
a) Tứ giác EFGH có 2 đường chéo bằng nhau và vuông góc với nhau.
b) Trung điểm các đường chéo của các tứ giác ABCD, EFGH là đỉnh 1 hình vuông.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là tâm các hình vuông có cạnh AB, BC, CD, AD dựng ra phía ngoài tứ giác.
Chứng minh rằng :
a) Tứ giác EFGH có 2 đường chéo bằng nhau và vuông góc với nhau.
b) Trung điểm các đường chéo của các tứ giác ABCD, EFGH là đỉnh 1 hình vuông.
THam khảo nha :
Xét bài toán: Cho tam giác ABC.ABC. Dựng hình vuông ABEFABEF và ACGHACGH phía ngoài tam giác. P,P, QQ theo thứ tự là tâm của hình vuông ABEFABEF và ACGH.ACGH. Lấy MMtrung điểm BC.BC. Chứng minh tam giác PQMPQM vuông cân tại M.M.
Lời giải:
Dễ dàng chứng minh được MPMP và MQMQ theo thứ tự là đường trung bình của tam giác BCFBCF và BCH.BCH.
Suy ra MP∥CF ; MP=12CFMP∥CF ; MP=12CF và MQ∥BH ; MQ=12BH. (1)MQ∥BH ; MQ=12BH. (1)
Ta có:
ˆBAH=ˆBAF+ˆFAH=90∘+ˆFAHBAH^=BAF^+FAH^=90∘+FAH^
ˆCAF=ˆCAH+ˆFAH=90∘+ˆFAHCAF^=CAH^+FAH^=90∘+FAH^
Do đó ˆBAH=ˆCAF.BAH^=CAF^.
Từ đó chứng minh được △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c)
⇒ˆFCA=ˆBHA⇒FCA^=BHA^
Gọi II và OO theo thứ tự là giao điểm của CFCF với BHBH và AH.AH.
Khi đó ˆOCA=ˆIHOOCA^=IHO^
Mà ˆOCA+ˆAOC=90∘OCA^+AOC^=90∘ và ˆAOC=ˆIOHAOC^=IOH^ ((đối đỉnh))
Nên ˆIHO+ˆIOH=90∘,IHO^+IOH^=90∘, suy ra ˆHIO=90∘HIO^=90∘
Do đó IH⊥IOIH⊥IO hay BH⊥CF. (2)BH⊥CF. (2)
Vì △AFC=△ABH (c.g.c)△AFC=△ABH (c.g.c) nên CF=BH. (3)CF=BH. (3)
Từ (1),(1), (2)(2) và (3)(3) suy ra MP=MQMP=MQ và MP⊥MQ.MP⊥MQ. Vậy tam giác MPQMPQ vuông cân tại M.M.
★★★★★★★★★★★★★★★★
Quay lại bài toán. Gọi MM là trung điểm ACAC
Áp dụng kết quả trên, ta chứng minh được tam giác EMFEMF và HMGHMG vuông cân tại M.M.
Từ đó chứng minh được △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c)
Rồi suy ra EG=HFEG=HF và EG⊥HF.EG⊥HF.
b)b) Gọi PP và QQ lần lượt là trung điểm HFHF và EGEG
Từ △MEG=△MFH (c.g.c)△MEG=△MFH (c.g.c) dễ dàng chứng minh được △MPF=△MQE (c.g.c)△MPF=△MQE (c.g.c)
Suy ra MP=MQMP=MQ và ˆPMF=ˆQME ⇒ ˆPMQ=ˆEMF=90∘PMF^=QME^ ⇒ PMQ^=EMF^=90∘
Do đó tam giác MPQMPQ vuông cân tại MM
Gọi NN trung điểm BD.BD. Chứng minh tương tự như trên, ta được tam giác NPQNPQ vuông cân tại N.N.
Suy ra tứ giác MPNQMPNQ là hình vuông.
cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E, F lần lượt là trung điểm của AB, BC. Chứng minh rằng đường thẳng đi qua E vuông góc với CD, đường thẳng đi qua F vuông góc với AD và một trong hai đường chéo đồng quy
1. Cho tứ giác ABCD có 2 đường chéo vuông góc với nhau. Gọi E; F; G lần lượt là trung điểm của AB; AD; AC. Vẽ EH vuông góc với CD, FK vuông góc với BC. Chứng minh 3 đường thẳng EH, FK, AC đồng quy tại 1 điểm
a) Chứng minh trong một tứ giác có hai đường chéo vuông góc, tổng bình phương của hai cạnh đối này bằng tổng các bình phương của hai cạnh đối kia.
b) Tứ giác ABCD có AC vuông góc với BD. Biết AD = 5cm, AB = 2 cm, BC = 10 cm. Tính độ dài CD
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc tại O
a. Chứng minh\(AB^{2} + CD^{2} = BC^{2} + AD^{2}
\)
b. Lấy các điểm M, N, P, Q thứ tự là trung điểm của AB, AC, CD, DA. Chứng Minh OM+ON+OQ=\(\dfrac{1}{2}\) (AB+BC+CD+DA)
a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)