Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hữu Nguyễn Văn
Xem chi tiết
nguyễn thảo hân
Xem chi tiết
 βєsէ Ňαkɾσtɦ
21 tháng 8 2016 lúc 9:43

\(\sqrt{5}\)

=2,2360607978....

=> Số trên là 1 số có giá trị chính xác

Mà là 1 số có giá trị kéo dài

=> Nó là số vô tỉ

 βєsէ Ňαkɾσtɦ
21 tháng 8 2016 lúc 9:51

\(\sqrt{5}\)là số vô tỉ.

Chứng minh:

Vì 5 là một số nguyên tố nên chỉ có hai ước là 1 và 5.

Ở đây khi được tạo bởi 2 thừa số giống nhau, và chính nó là tích.                ( lí luận 1)

=> Hai thừa số đó là 1 số vô tỉ (là 1 số kéo dài)

Có thể nói 5 không là một số chính phương nào cả => \(\sqrt{5}\)cũng không là 1 số hữu tỉ mà là 1 số vô tỉ.               (lí luận 2)

Đỗ Đạt
21 tháng 8 2016 lúc 10:02

vì 5 là số nguyên tố 

=> \(\sqrt{5}\) là số vô tỉ

Nguyễn Thảo Hân
Xem chi tiết
Lê Nguyên Hạo
21 tháng 8 2016 lúc 9:57

Giả sử căn 5 là số vô tỉ biểu thị bởi phân số tối giản \(\frac{p}{q}\)
=> \(\frac{p}{q}=\sqrt{5}\Rightarrow\frac{p^2}{q^2}=5\Rightarrow p^2=5q^2\)
Như vậy \(p^2\) chia hết cho 5 => p chia hết cho 5 => p= 5k 
Do đó \(25k^2=5q^2\Rightarrow q^2=5k^2\Rightarrow q^2⋮5\Rightarrow q⋮5\) chia hết cho 5 nên q chia hết cho 5 
Vì p;q chia hết cho 5 nên p/q không tối giản (mâu thuẫn với giả thiết) 
Vậy căn 5 là số vô tỉ

Isolde Moria
21 tháng 8 2016 lúc 9:57

Ta giải bằng phương phap phản chứng .

Giả sử \(\sqrt{5}\) là số hữa tỉ

\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a;b\in Z;\left(a;b\right)=1\right)\)

\(\Rightarrow5=\frac{a^2}{b^2}\)

\(\Rightarrow\frac{a^2}{5}=b^2\)

Mà b là số nguyên

\(\Rightarrow a^2⋮5\)

Mặt khác 5 là số nguyên tố

\(\Rightarrow a^2⋮25\)

Ta lại có

\(a^2=5b^2\)

\(\Rightarrow5b^2⋮25\)

\(\Rightarrow b^2⋮5\)

Ta có

a^2 chia hết cho 5 ; b^2 chia hết cho 5

=> \(ƯC_{\left(a;b\right)}=5\)

Trái với giả thiết

=> giả sử sai

Vậy căn 5 là số vô tỉ

Võ Đông Anh Tuấn
21 tháng 8 2016 lúc 9:52

giả sử √5 là số hữu tỉ 
=> √5 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 5 = a²/b² 
<=> a² = 5b² 
=> a² ⋮ 5 
5 nguyên tố 
=> a ⋮ 5 
=> a² ⋮ 25 
=> 5b² ⋮ 25 
=> b² ⋮ 5 
=> b ⋮ 5 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √5 là số vô tỉ

Fuiki Fuiko
Xem chi tiết
Vũ Mỹ Lệ
12 tháng 10 2017 lúc 21:12

iả sử √22 là số hữu tỉ.

Vậy có thể viết √22 dưới dạng abab với a,bϵZ,b≠0a,bϵZ,b≠0 và (a;b)=1(a;b)=1 (1)

⇒a2b2=2⇒a2=2b2⇒a2b2=2⇒a2=2b2

⇒a⇒a chẵn . Đặt a=2ka=2k (kϵZkϵZ)

⇒4k2b2=2⇒4k2=2b2⇒b2=2k2⇒4k2b2=2⇒4k2=2b2⇒b2=2k2

⇒b⇒b chẵn . 

Vậy (a;b)≠1(a;b)≠1 trái với (1)

Vậy √22 là số vô tỷ.

Fuiki Fuiko
Xem chi tiết
Phan Nghĩa
12 tháng 10 2017 lúc 21:09

Xin phép sửa lại đề: Chứng minh rằng \(\sqrt{2}\)là số vô tỉ.

Giải:

Giả sử \(\sqrt{2}\)là số vô tỉ.

Khi đó ta có: \(\sqrt{2}=\frac{m}{n}\) \(m;n=1\)

\(\Rightarrow2=\frac{m^2}{n^2}\)

\(\Rightarrow2n^2=m^2\)

\(\Rightarrow m⋮n\) \(2;1=1\)

\(\Rightarrow\)Điều giả sử vô lý

\(\Rightarrow\sqrt{2}\)là số vô tỉ

dinh tien dat
Xem chi tiết
Akai Haruma
30 tháng 6 2024 lúc 17:33

Lời giải:
$x$ là số hữu tỉ khác $0$. Đặt $x=\frac{a}{b}$ với $a,b$ là số nguyên, $b\neq 0$.

Giả sử $x+y$ là số hữu tỉ. Đặt $x+y=\frac{c}{d}$ với $c,d\in\mathbb{Z}, d\neq 0$

$\Rightarrow y=\frac{c}{d}-x=\frac{c}{d}-\frac{a}{b}=\frac{bc-ad}{bd}$ là số hữu tỉ (do $bc-ad, bd\in\mathbb{Z}, bd\neq 0$)

Điều này vô lý do $y$ là số vô tỉ.

$\Rightarrow$ điều giả sử là sai. Tức là $x+y$ vô tỉ.

Hoàn toàn tương tự, $x-y$ cũng là số vô tỉ.

-------------------------------

Chứng minh $xy$ vô tỉ.

Giả sử $xy$ hữu tỉ. Đặt $xy=\frac{c}{d}$ với $c,d$ nguyên và $d\neq 0$

$\Rightarrow y=\frac{c}{d}:x=\frac{c}{d}:\frac{a}{b}=\frac{bc}{ad}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai $\Rightarrow xy$ vô tỉ.

-------------------------------

CM $\frac{x}{y}$ vô tỉ.

Giả sử $\frac{x}{y}$ hữu tỉ. Đặt $\frac{x}{y}=\frac{c}{d}$ với $c,d$ nguyên, $d\neq 0$

$\Rightarrow y=x:\frac{c}{d}=\frac{a}{b}: \frac{c}{d}=\frac{ad}{bc}\in\mathbb{Q}$

Điều này vô lý do $y\not\in Q$

$\Rightarrow$ điều giả sử là sai. Tức là $\frac{x}{y}$ vô tỉ.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2018 lúc 2:15

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Shinnôsuke
Xem chi tiết
Usagi Serenity
Xem chi tiết
Đ𝐚𝐧𝐧 𝐋ê
24 tháng 6 2019 lúc 12:31

trả lời 

xl a 

e chưa làm 

bài này

Aug.21
24 tháng 6 2019 lúc 12:33

Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.

Vậy\(\sqrt{a}\) là số vô tỉ.

Giả sử √a là số hữu tỉ thì √a viết được thành 

Do a không phải là số chính phương nên \(\frac{m}{n}\)không phải là số tự nhiên, do đó n > 1.

 

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.