Chứng tỏ rằng :
Tổng của N số tự nhiên liên tiếp là một số chia hết choN, nếu N là số chẵn
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
bài 3
http://data.nslide.com/uploads/resources/620/3533369/preview.swf
Bài 2: Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là một số chia hết cho n, nếu n lẻ.
b) Tổng của số n số tự nhiên liên tiếp là một số không chia hết cho n, nếu n chẵn.
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
Ai tích mk mk sẽ tích lại
Gọi n số tự nhiên liên tiếp là a; a + 1;...; a + n - 1
Ta có: a + (a + 1) + (a + 2) +...+ (a + n - 1)
= na + n(n - 1) : 2
= n(a + (n - 1) : 2)
a) Nếu n lẻ thì n - 1 chẵn nên (n - 1) : 2 là số tự nhiên, do đó --> đpcm.
b) Nếu n chẵn thì n - 1 lẻ nên (n - 1) : 2 không là số tự nhiên, do đó --> đpcm
chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Ta có AEED =dt(AEN)dt(DEN) =hA→MNhD→MN =dt(AMN)dt(DMN)
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy AEED =dt(AMN)dt(DMN) =18 dt(ABC)14 dt(ABC) =12 , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
k mình nha
không nên:
Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Chứng tỏ rằng:
(a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ?
(b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn?
Chứng tỏ rằng:
a) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số lẻ
b) Tổng của n số tự nhiên liên tiếp là 1 số chia hết cho n nếu n là số chẵn
Ta có 1+2+...+n=n(n+1) chia hết cho n với mọi n
Chứng tỏ rằng tổng n số tự nhiên liên tiếp là một số không chia hết cho n nếu n là số chẵn
Chứng tỏ rằng tổng của n số tự nhiên liên tiếp là :
a)là một số chia hết cho n nếu n là số lẻ
b) là một số không chia cho n nếu n là số chẵn
1) Chứng minh rằng tổng n số tự nhiên liên tiếp chia hết cho n nếu n là số lẻ ?
2) Chứng minh tổng n số tự nhiên liên tiếp không chia hết cho n nếu n là số chẵn ?
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
Chứng tỏ rằng tổng của n số tự nhiên liên tiếp là một số chia hết cho n nếu n là số lẻ