Chứng minh rằng đa thức này luôn dương với mọi x
x2 - x + 2
Chứng minh rằng đa thức này trong phép chia luôn dương với mọi x
x2 - x + 2
theo đề bài ta có
x^2-x-2
=x^2-2x1/2+1/4-1/4+2
=(x^2-2x1/2+1/4)+(2-1/4)
=(x-1/2)^2+7/4
vì (x-1/2)^2>0
=>(x-1/2)^2+7/4>7/4
vậy đa thức này trong phép chia luôn dương với mọi x
Chứng minh rằng đa thức x^4+2x^2+1 luôn nhận giá trị dương với mọi x
\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm )
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
Chứng minh rằng với mọi giá trị của x thì giá trị của đa thức :
f(x) = (x-3)(x-5)+2 luôn luôn có giá trị dương
Chú ý rằng nếu c > 0 thì a + b 2 + c và a + b 2 + c đều dương với mọi a, b. Áp dụng điều này chứng minh rằng:
Với mọi giá trị của x khác ± 1, biểu thức:
x + 2 x - 1 x 3 2 x + 2 + 1 - 8 x + 7 2 x 2 - 2 luôn luôn có giá trị dương.
Điều kiện x ≠ 1 và x ≠ - 1
Ta có:
Biểu thức dương khi x 2 + 2 x + 3 > 0
Ta có: x 2 + 2 x + 3 = x 2 + 2 x + 1 + 2 = x + 1 2 + 2 > 0 với mọi giá trị của x.
Vậy giá trị của biểu thức dương với mọi giá trị x ≠ 1 và x ≠ - 1
1/ Chứng minh đa thức sau luôn dương với mọi x:
x2 - x + 1
2/ Chứng minh các đa thức sau luôn âm với mọi x:
a) (x - 3)(1 - x) - 2
b) (x + 4)(2 - x) - 10
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
Chứng minh rằng hiệu của hai đa thức 1,2x4 +0,4x2 -3 và 0,2x4 +0,4x2 -9 luôn dương với mọi giá trị thực của x.
Lời giải:
$(1,2x^4+0,4x^2-3)-(0,2x^4+0,4x^2-9)=x^4+6=(x^2)^2+6\geq 0+6>0$ với mọi giá trị thực của $x$
Do đó ta có đpcm.
Chứng minh rằng:
a) Biểu thức A=x^2+x+1 luôn luôn dương với mọi x
b) Biểu thức B= x^2-xy+y^2 luôn luôn dương với mọi x,y không đồng thời bằng 0
c) Biểu thức C= 4x-10-x^2 luôn luôn âm với mọi x
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)
\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)
chứng minh đa thức sau luôn dương với mọi giá trị của x
x^4-x^3+3x^2-2x+2
vẫn thế sao chả hiểu lổi cái dạng này ý nhỉ
x4 - x3 + 3x2 - 2x + 2
= x4 - x3 + x2 + 2x2 - 2x + 2
= x2(x2 - x + 1) + 2(x2 - x + 1)
= (x2 + 2)(x2 - x + 1)
= (x2 + 2)(x2 - x + 1/4 + 3/4)
= (x2 + 2)[(x - 1/2)2 + 3/4]
x2 + 2 lớn hơn hoặc bằng 2
(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4
(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)
Chứng minh rằng hiệu hai đa thức: 0,7x4 + 0,2x2 - 5 và 0,3x4 + 0,2x2 - 8
Luôn luôn dương với mọi giá trị của x.
đặt A= 0,7x^4+0,2^2-5-0,3x^4-0,2x^2+8
=0,4x^4+3
vì x^4 luôn dương với mọi x
suy ra biểu thức A luôn dương với mọi giá trị của x (đpcm)