Cho \(x\in\) Z và -2014<x<2016
a) Viết tập hợp các số nguyên x?
b)Tính tổng các số nguyên x?
cho x,y,z là các số dương và
\(\sqrt{\left(x^2-2014\right)\left(y^2-2014\right)}+\sqrt{\left(y^2-2014\right)\left(z^2-2014\right)}+\sqrt{\left(z^2-2014\right)\left(x^2-2014\right)}=2014\)
tính
\(A=xyz\left(\frac{\sqrt{x^2-2014}}{x^2}+\frac{\sqrt{y^2-2014}}{y^2}+\frac{\sqrt{z^2-2014}}{z^2}\right)\)
câu này mik vừa làm sáng ngày ne
ta đặt \(\sqrt{x^2-2014}=a;\sqrt{y^2-2014}=b;\sqrt{z^2-2014}=c\)
ta có \(ab+bc+ca=2014\Rightarrow ab+bc+ca+a^2=x^2-2014+2014=x^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)=x^2\)
tương tự ta có \(\left(b+c\right)\left(b+a\right)=y^2;\left(c+a\right)\left(c+b\right)=z^2\)
nhân cả 3 vào ta có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=xyz\)
=> \(\hept{\begin{cases}\left(a+b\right)z^2=xyz\\\left(b+c\right)x^2=xyz\\\left(c+a\right)y^2=xyz\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{xy}{z}\\b+c=\frac{yz}{x}\\c+a=\frac{zx}{y}\end{cases}}}\)
cậu nhân tung A ra rồi thay \(\frac{xy}{z};\frac{yz}{x};\frac{zx}{y}\) như vừa tính vào thì cậu sẽ ra kết quả là A=4028
Tìm \(x,y,z\in Z+\) thỏa mãn 2 điều kiện sau: \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
CHO x+y+z=2014 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}\)
CM: tồn tại x hoặc y hoặc z bằng 2014
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}=\frac{1}{x+y+z}$
$\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0$
$\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$
$\Leftrightarrow (x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)})=0$
$\Leftrihgtarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$
$\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$
$\Rightarrow (x+y)(y+z)(x+z)=0$
$\Leftrightarrow (2014-x)(2014-y)(2014-z)=0$
$\Leftrightarrow 2014-x=0$ hoặc $2014-y=0$ hoặc $2014-z=0$
$\Leftrightarrow x=2014$ hoặc $y=2014$ hoặc $z=2014$
Cho x, y, z thỏa mãn: \(x+y+z=1\) và \(x^3+y^3+z^3\)
Tính giá trị biểu thức: \(M=x^{2014}+y^{2014}+z^{2014}\)
Cho các số x,y,z thỏa mãn:x2+y2+z2=xy+yz+zx và x2014+y2014+z2014=3. Tính giá trị cua biểu thức P=x25+y4+z2015
Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)
<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0
<=> x=y=z
=> 3x^2014=3
=>x=y=z=1
=>P= 1^25+1^4+1^2015 = 3
Cho x,y,z thỏa mãn:
\(x^{2014}+y^{2014}+x^{2014}=x^{1007}y^{1007}+y^{1007}.z^{1007}+z^{1007}.x^{1007}\)
Tính giá trị của biểu thức \(P=\left(x-y\right)^{2014}+\left(y-z\right)^{2014}+\left(x-z\right)^{2014}\)
cho x,y,z\(\ge\sqrt{2014}\) thỏa mãn
\(\sqrt{\left(x^2-2014\right)\left(y^2-2014\right)}+\sqrt{\left(y^2-2014\right)\left(z^2-2014\right)}+\sqrt{\left(z^2-2014\right)\left(x^2-2014\right)}=2014\)
Tính \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)
So sánh : 2014/x + 2015/y + 2016/z và 2014+2015+2016/x+y+z
2014/x + 2015/y + 2016/z > 2014+2015+2016/x+y+z
bạn ko nên trả lời quá nhiều cùng 1 câu hỏi mà kết quả trả lời giống nhau.
Cho các số: x,y,z thỏa mãn: x2 + y2 + z2 = xy + yz + zx và x2014 + y2014 + z2014 = 3
Tính giá trị của biểu thức : P = x25 + y4 + z2015
x^2 + y^2 +z^2 =xy+yz+zx
=> x^2 + y^2 +z^2-xy-yz-zx=0
2x^2 + 2y^2 + 2z^2 - 2xy-2yz-2zx=0
(x-y)^2 + (y-z)^2 + (z-x)^2=0
=> x=y=z (x;y;z >0)
=> 3.x^2014=3.y^2014=3.z^2014=3
x^2014=y^2014=z^2014=1
x=y=z=1
tự tính P nha