Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hiền Trâm
Xem chi tiết
Trên con đường thành côn...
2 tháng 8 2021 lúc 21:52

undefined

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 21:57

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:46

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

Thảo Bùi
Xem chi tiết
Thảo Bùi
Xem chi tiết
Sakura kinomoto
Xem chi tiết
cô gái cá tính
Xem chi tiết
Nguyễn Minh Quang
12 tháng 8 2021 lúc 15:27

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

Khách vãng lai đã xóa
Phúc Quang
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 10 2021 lúc 19:43

\(z^2=xy-16=\left(8-y\right)y-16=-y^2+8y-16\\ \Leftrightarrow z^2+\left(y-4\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}z=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=0\\x=8-4=4\end{matrix}\right.\\ \Leftrightarrow P=x+z=0+4=4\)

Lê Đức Thiên Anh
Xem chi tiết
Cassie Natalie Nicole
27 tháng 8 2016 lúc 21:03

kinh nhờ học nhà thầy Khánh à ?

Hoàng Tử Lớp Học
27 tháng 8 2016 lúc 21:20

mấy bạn biết thầy Khánh ak thầy mk đó

Nguyễn Thiên Kỳ
Xem chi tiết
Nguyen van an
8 tháng 8 2017 lúc 15:27

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

Nguyen van an
8 tháng 8 2017 lúc 15:28

sai con khi

Yen Nhi
2 tháng 7 2021 lúc 10:23

\(1.\)

\(a)\)

\(x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=a^2-2b\)

\(b)\)

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=a[\left(x+y\right)^2-3xy]\)

\(=a\left(a^2-3b\right)\)

\(=a^3-3ab\)

\(c)\)

\(x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+2b^2\)

\(d)\)

\(x^5+y^5\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)

\(=a^5-5a^3b+5ab^2\)

Khách vãng lai đã xóa