CMR: m+4n chia het cho 13←→10m+n chia het cho 13 va m,n thuoc N
tim n thuoc N de 4n-5 chia het cho 13
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
BAI 1 :
CHO 3a + 2b chia het cho 17 ( a , b thuoc N ) . CHUNG MINH RANG : 10a + b chia het cho 17
BAI 2 :
CHUNG MINH RANG : neu m + 4n chia het cho 13 . MOI m,n deu thuoc N
BAI 3 : CHUNG MING RANG :
a) 55 - 54+ 53 chia het cho 7
b) 109 + 108+ 107chia het cho 222
GIUP MINH 3 BAI NAY VOI !
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
Tim so tu nhien n sao cho:
a/ 5:n+1 b/ 15:n+1 c/ n+3 : n+1 d/ 4n+3:2n+1
Biet rang 7a+2b chia het cho 13 ( a,b thuoc N ). Chung to rang 10a+b cung chia het cho 13 ?
a) Ta có:
\(5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)
Vậy \(n\in\left\{0;4\right\}\)
b) Ta có:
\(15⋮n+1\)
\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)
Vậy \(n\in\left\{0;2;4;14\right\}\)
c) Ta có:
\(n+3⋮n+1\)
\(\Rightarrow\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)
Vậy \(n\in\left\{0;1\right\}\)
d) Ta có:
\(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)
\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )
\(\Rightarrow2n+1=1\)
\(\Rightarrow n=0\)
Vậy \(n=0\)
CMR: m+4n chia hết cho 13 <=>10m+n chia hết cho 13 , mọi m,n thuộc N
A =m+4n
B =10m+n
10A - B = 10m +40n -10m -n =39n chia hết cho 13
+Nếu A =m+4n chia hết cho 13 => 10A chia hết cho 13
=> B chia hết cho 13 ( tính chất chia hết của 1 tổng)
+Nếu B = 10m +n chia hết cho 13 => 10A chia hết cho 13 ; vì 10 không chia hết cho 13 => A chia hết cho 13
Vậy A chia hết cho 13 \(\Leftrightarrow\) B chia hết cho 13
CMR : m+4n chia hết cho 13 suy ra 10m + n chia hết cho 13 mọi m,n thuộc N
Gọi m+4n là x;10m+n la y
3x+y=3(m+4n)+10m+n=(3m+12n+10m+n)=(13m+13n) chia hết cho 13
Mà 3x chia hết cho 13
=>y chia hết cho 13
Vậy nếu m+4n chia hết cho 13 suy ra 10m+n chia hết cho 13 với mọi n,m thuộc N
CMR: m+4n chia hết cho 13<=>10m+n chia hết cho 13 với mọi m,n thuộc N
m+4n :13
m+4n+39m : 13
40m+4n : 13
4(10m+n) : 13
Vài (4;13)=1
=> 10m+n : 13
cho a,b,n thuoc z,n>cmr neu a va b chia cho m co cung so du thi a-b chia het m
ta có; a=c.m+k ; b=d.m+k (a>b)
a-b=(c.m+k)-(d.m+k)=c.m+k-d.m-k=(c-d).m+(k-k)=(c-d).m
vì (c-d).m chia hết cho m nên a-b chia hết cho m
tích mình nhé các bạn !
Bai 1 :Tim n thuoc N sao cho
a) 4n - 5 chia het cho 13
b) 5n + 1 chia het cho 7
c) 25n +3 chia het cho 53
bai 2; tim a, b la chu so sao cho 2a43b5 chia het cho 1375
bai 3 ; Tim so tu nhien nho nhat a sao cho a : 30 du 7 va a : 40 du 17
giai giup minh 3 bai nay nhe