Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VICTOR_Thiều Thị Khánh V...
Xem chi tiết
Võ Đông Anh Tuấn
29 tháng 5 2016 lúc 10:29

Ta thấy 11x⋮6 nên x⋮6.

Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20

Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :

   y = 20 -11k3

Tách guyên giá trị nguyên của biểu thức này :

   y = 7 - 4k +k - 13

Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :

= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6

Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.

 Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :

{=18t+6y=3−11t vớ i t là số nguyên tùy ý

 mk nha các bạn !!!

Võ Đông Anh Tuấn
29 tháng 5 2016 lúc 10:33

Thành lập hội VICTOR_TÊN NHA

Thắng Nguyễn
29 tháng 5 2016 lúc 10:36

VICTOR_Nobita Kun đừng lấy hội này ra để đùa như thế =))

Trương Tuấn Nghĩa
Xem chi tiết
Lee Min Ho
Xem chi tiết
lewandoski
Xem chi tiết
nguyenvankhoa
Xem chi tiết
Thành Lân Dương
Xem chi tiết
Nguyễn Thị Yến Nhi
Xem chi tiết
Phạm Văn An
12 tháng 4 2016 lúc 20:54

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

Kaito Kid
5 tháng 3 2018 lúc 21:11

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

Trang-g Seola-a
Xem chi tiết
๖ۣۜSۣۜN✯•Y.Šynˣˣ♂
Xem chi tiết
Trần Tiến Pro ✓
30 tháng 1 2019 lúc 20:44

\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)

\(\text{TH1 : z = 0}\)

\(\Rightarrow2016^0+2017^y=2018^x\)

\(\Rightarrow1+2017^y=2018^x\)

\(\Rightarrow y=1;x=1\)

\(\text{TH2 : y = 0 }\)

\(\Rightarrow2016^z+2017^0=2018^x\)

\(\Rightarrow2016^z+1=2018^x\)

\(\text{Vế trái là số lẻ khi x }\ge1\)

\(\text{Vế phải là số chẵn khi x }\ge1\)

\(\Rightarrow\text{TH2 bị loại}\)

\(\text{TH3 : }x,y,z\ne0\)

\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)

\(\Rightarrow2018^x\text{ là số chẵn}\)

\(\Rightarrow\text{TH3 bị loại}\)

\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)