Tìm \(x\in Z\)thõa mãn
\(x^4+x^3+x^2+x+1\)là số chính phương
1. Tìm số nguyên dương x, y thõa mãn 11x+18y =120.
2.Cho số a=11111.....1(n chữ số 1); số b= 100....05( n-1 chữ số 0).CMR a.b +1 là số chính phương.
3. Cho /x/ + /x+1/ + /x+2/ + /x+3/=6x. Chứng minh \(x\ge0\)
Tìm x thuộc Z thỏa mãn đẳng thức trên.
Ta thấy 11x⋮6 nên x⋮6.
Đặt x=6k (k nguyên).Thay vào (1) và rút gọn ta đượ c: 11k+3y=20
Biểu thị ẩn mà hệ số của nó có giá trị tuyệt đói nhỏ ( là y ) theo k ta được :
y = 20 -11k3
Tách guyên giá trị nguyên của biểu thức này :
y = 7 - 4k +k - 13
Lại đặt k - 13 = t với t nguyên => k = 3t + 1 . Do đó :
= 7 - 4 ( 3t + 1) +t = 3 - 11 = tx = 6k = 6 ( 3t+1) = 18t + 6
Thay các biểu thức của x và y vào (1), phương trình đượ c nghiệm đúng.
Vậy các nghiệm nguyên của (1) đượ c biểu thị bở i công thức :
{=18t+6y=3−11t vớ i t là số nguyên tùy ý
mk nha các bạn !!!
VICTOR_Nobita Kun đừng lấy hội này ra để đùa như thế =))
1) Cho x,y \(\in Z\); x,y > 1 thỏa mãn : \(4x^2y^2-7x+7y\)là số chính phương. CMR: x=y
2) Cho a,b,c \(\in Z\)thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).CMR:\)ab+bc+ca; ab,bc,ca đều là các số chính phương.
3) CMR: \(\forall n\in N\)thì số an = \(2^n+3^n+5^n+6^n\)đều không là số lập phương
4) Tìm \(x,y\in Z\)thỏa mãn \(x^3-y^3=285\left(x^2+y^2\right)\)
5) Cho \(a,b,c\in Z\)thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in Z\). CMR abc là 1 số lập phương
6) Tìm x,y \(\in Z\), \(x\le y\)để \(1+4^x+4^y\)là số chính phương
cho các số x;y;z thõa mãn hệ phương trình x^2+y^2+z^2=1; x^3+y^3+z^3=1. tính P=xyz
Tìm\(x\in Z\)để
\(x^4+x^3+x^2+x+1\)là số chính phương
Tìm x,y,z thõa mãn : x-1 phần 2 bằng y-2 phần 3 bằng z-3 phần 4 và x-2y+3z = -10 . Khi đó x=?;y=?;z=?
Cho x,y,z là các số thực dương thõa mãn x+y+z=3.Tìm GTNN của P=x4+2y4+3z4
câu 1 tìm x,y nguyên dương thõa mãn xy+x-y=4
câu 2: cho x,y,z là số nguyên dương và x+y+z là số lẻ các số thực a,b,c thõa mãn \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)chứng minh rằng a=b=c
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)
Cho z\(\in\)N và x,y \(\in\)Z thỏa mãn: x+y+xy=1
Tìm x,y,z sao cho A=(2z+1+42)(x2+y2+x2y2+1) là số chính phương lớn nhất.
\(\text{1 . 2016}^z\text{ + 2017}^y\text{ = 2018}^x\)
\(\text{TH1 : z = 0}\)
\(\Rightarrow2016^0+2017^y=2018^x\)
\(\Rightarrow1+2017^y=2018^x\)
\(\Rightarrow y=1;x=1\)
\(\text{TH2 : y = 0 }\)
\(\Rightarrow2016^z+2017^0=2018^x\)
\(\Rightarrow2016^z+1=2018^x\)
\(\text{Vế trái là số lẻ khi x }\ge1\)
\(\text{Vế phải là số chẵn khi x }\ge1\)
\(\Rightarrow\text{TH2 bị loại}\)
\(\text{TH3 : }x,y,z\ne0\)
\(\Rightarrow2016^z+2017^y\text{ là số lẻ}\)
\(\Rightarrow2018^x\text{ là số chẵn}\)
\(\Rightarrow\text{TH3 bị loại}\)
\(\text{Vậy z = 0 ; y = 1 ; x = 1}\)