Cho tam giac ABC vuong tai A, duong cao AH, phan giac BE cat nhau tai D. CD cat AB tai F. CMR BF.cos^2C = AF.sinC
Cho tam giac ABC vuong tai A (AB<AC) ve duong cao AH (H thuoc BC)
A)cm tam giac ABH~tam giac CBA suy ra AB binh =BH.BC
B)cho AB=6cm, AC=8cm . Tinh BC.Tren canh BC lay diem E sao cho CE=4cm, cm BE binh=BH.HC
C) tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D, duong phan giac cua goc AHC cat AC tai F, duong thang DF cat AH tai I va cat CB tai K.cm DI.FK=DK.FI
cho tam giac abc nhon noi tiep (O;R) co ab>ac tia phan giac cua goc a cat bc tai i va cat (O) tai d. ha be va cf vuong goc voi ad tai e va f, ve duong cao ah cua tam giac abc
c, ve im vuong goc ab tai m chung minh f,m,h thang hang
d, bf cat ce tai k chung minh ak la phan giac ngoai tam giac abc
Cho tam giac ABC vuong tai A ( AB<AC) ve duong cao AH (H thuoc BC)
A) cm tam giac ABH dong dang tam giac CBA suy ra AB binh =BH.BC
B) Cho AB =6cm , AC=8cm. Tinh BC .Tren canh BC lay diem E sao cho CE=4cm, cm BE binh =BH.HC
C) Tinh dien tich tam giac ABH
D) Duong phan giac cua goc AHB cat AB tai D duong phan giac cua goc AHC cat AC tai F duong thanh DF cat AH tai I va cat CB tai K. Cm DI .FK=DK.FI
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
cho tam giac ABC vuong tai A . duong cao AH . tia phan giac HAC cat BC tai D
CMR . tam giac ABD can
co phan giac goc B cat AH tai I . CMR. DI // AC
So sanh HD va DC
cho tam giac ABC can tai A . duong phan giac GC qua D ve duong thang vuong goc voi CD cat BC tai F . Duong thang ke qua D song song voi BC cat AC tai E . phan giac goc BAC cat DE tai M
CMR CF= 2BD
MD=CF/4
Cho tam giac ABC vuong tai A , duong phan giac BK cat AC tai K . VE KH vuong voi BC tai H
a ) cm tam giac ABK=tam giac HBK
b) AH cat BK tai I , cho AB =5cm,AH=6cm . Tinh BI
c) tia HK cat tia BA tai F . CM AH//FC
Cho tam giac ABC vuong tai A ngoai tiep duong tron tam I. cac tiep diem tren BC,AC,AB lan luot la D,E,F . Goi M la trung diem AC, MI cat AB tai N DF cat duong cao AH cua tam giac ABC tai P . CMR ANP la tam giac can
Bổ đề: Xét tam giác ABC vuông tại A, đường phân giác trong AD. Khi đó \(\frac{1}{AC}+\frac{1}{AB}=\frac{\sqrt{2}}{AD}\).
Phép chứng minh bổ đề rất đơn giản (Gợi ý: Kẻ DH,DK lần lượt vuông góc với AB,AC)
Quay trở lại bài toán: Gọi \(r\) là bán kính của đường tròn (I)
Áp dụng Bổ đề vào \(\Delta\)NAM có \(\frac{1}{AM}+\frac{1}{AN}=\frac{\sqrt{2}}{AI}\)hay \(\frac{2}{AC}+\frac{1}{AN}=\frac{\sqrt{2}}{r\sqrt{2}}=\frac{1}{r}\)
Từ đó \(\frac{1}{AN}=\frac{AC-2r}{r.AC}\Rightarrow AN=\frac{r.AC}{AC-2r}\)
Gọi AI cắt FD tại Q. Dễ thấy ^QDC = ^BDF = 900 - ^ABC/2 = 1/2(^BAC + ^ACB) = ^QIC
Suy ra tứ giác CIDQ nội tiếp => ^CQI = ^CDI = 900. Do đó \(\Delta\)AQC vuông cân tại Q
Từ đó, áp dụng hệ quả ĐL Thales, ta có:
\(\frac{AP}{r}=\frac{AP}{ID}=\frac{QA}{QI}=1+\frac{AN}{QM}=1+\frac{2AN}{AC}\)
\(\Rightarrow AP=\frac{r.AC+2r.AN}{AC}=\frac{r.AC+2r.\frac{r.AC}{AC-2r}}{AC}=r+\frac{2r^2}{AC-2r}=\frac{r.AC}{AC-2r}=AN\)
Vậy nên \(\Delta\)ANP cân tại A (đpcm).
bn co cach nao ma ko can dung tu giac noi tiep ko
Thichhoctoan ơi bài trên đâu phải toán lớp 1 đầu . Lớp 1 làm gì đã học trung điểm , tam giác cân . Theo tớ nhớ thì nên lớp 3 hay 4 mới học trung điểm còn tam giác cân thì lớp 8 hay lớp 7 chứ .
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cho tam giac ABC vuong tai A ( AB>AC). AM la duon trung tuyen. Ke duong thang vuong goc AM tai M lan luot cat AB tai E, cat AC tai F. CMR
a. Tam giac MBE dong dang tam giac MFC
b. AE.AB= AC. AF
c. Duong cao AH cua tam giac ABC cat EF tai I. CMR \(\dfrac{S_{ABC}}{S_{AFE}}\)=\(\left(\dfrac{AM}{AI}\right)^2\)