Cho hình hành ABCD vẽ AH vuong góc với CD ,CK vuông góc với AB Cmr
a/AC =HK
AC ,BD,HK đông quy
cho hình bình hành ABCD kẻ AH vuông góc DC tại H , CK vuông góc AB tai K
a. tính góc HAK
b. AC,HK,BD đồng quy
cho hbh ABCD. vẽ AH vuông góc với CD,CK vuông góc với AB. Cmr: a) AC=HK. b) AC,BD,HK đồng quy
Cho hình bình hành ABCD (AB > BC), gọi M và N lần lượt là trung điểm của AB và CD.
a) Chứng minh AN//MC
b) Từ A vẽ AH vuông góc với BD (H thuộc BD), từ C vẽ CK vuông góc với BD (K thuộc BD). Tứ giác AHCK là hình gì? Vì sao?
c) AH cắt CD tại E, CK cắt AB tại F. Gọi O là trung điểm của HK. Chứng minh E, O, F thẳng hàng
giúp em với ạ em đang cần gấp :<<
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra:AN//CM
cho hình bình thành abcd ( ac> bd ) .vẽ ce vuông góc ab tại e , cf vuông góc tại f , bh vuông góc tại h .a) cmr: ab. ae= ac. ah .b)cmr: tam giác cbh $ tam giác acf . c) tia bh cắt đường thẳng cd tại q , cắt cạnh ad tại k . cmr: bh 2: hk. hq . giúp tui với m.n
a: Xét ΔAEC vuông tại E và ΔAHB vuông tại H có
góc EAC chung
=>ΔAEC đồng dạng với ΔAHB
=>AE/AH=AC/AB
=>AE*AB=AC*AH
b: Xét ΔCBH vuông tại H và ΔACF vuông tại F có
góc BCH=góc CAF
=>ΔCBH đồng dạng với ΔACF
cho hình vẽ , biết AB//CD và AB=CD. AH vuông góc với BD ,CK vuông góc với BD.Chứng minh: a,AH//CK b,AK//HC c,AH=KC
Cho hình bình hành ABCD , kẻ AH và CK vuông góc với BD
1, Chứng minh tứ giác AHCK là hình bình hành
2, kéo dài AH và CK cắt CD tại I và cắt AB tại F.Chứng minh AI=CF
3, chứng minh BH=CK
4, Gọi O là trung điểm của HK . chứng minh 3 điểm A,O,C thẳng hàng
5, chứng minh 3 đường thẳng AC BD và IF đồng quy
1/
Ta có
\(ÁH\perp BD\left(gt\right);CK\perp BD\left(gt\right)\) => AH//CK (1)
Xét tg vuông ADH và tg vuông BCK có
AD//BC (cạnh đối hbh) \(\Rightarrow\widehat{ADH}=\widehat{CBK}\) (góc so le trong)
AD=BC (cạnh đối hbh)
=> tg ADH = tg BCK (Hai tg cuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=CK (2)
Từ (1) và (2) => AHCK là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
2/
Ta có
AH//CK (cmt) => AI//CF
AB//CD (cạnh đối hbh) => AF//CI
=> AICF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => AI = CF (cạnh đối hbh)
4/ Xét hbh AHCK có
AC cắt HK tại O' => O'H=O'K (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm HK
Mà O cũng là trung điểm HK
=> \(O\equiv O'\) => A; O; C thẳng hàng
5/
Xét hbh AHCK có
AC cắt HK tại O (cmt) => OA=OC
Xét hbh ABCD có
OA=OC (cmt) => OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Ta có
AICF là hbh (cmt) => FI cắt AC tại trung điểm O của AC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> AC; BD; IF đồng quy
Cho hình bình hành ABCD. Kẻ AH vuông góc với BD, CK vuông góc BD. AH cắt DC tại E, CK cắt AB tại F.
a) C/m HEKF là hình bình hành
b) C/m AC, BD, EF đồng quy
Các bạn giúp mình nhé sáng mai mình cần rồi. Mình cảm ơn các bạn nhiều!
cho hình bình hanh abcd,hạ ah vuông góc với bd,ck vuông góc với bd.cmr:ck=ah vá ac đi qua trung điểm hk.
Cho hình bình hành ABCD, 2 đường chéo cắt nhau tại O. Kẻ AH vuông góc BD, CD vuông góc BD (AC ko vuông góc BD)
a) C/m tứ giác AHCK là hình bình hành
b)Biết AH cắt CD tại M, CK cắt AB tại N. C/m O là trung điểm của MN
a) Xét hai tam giác vuông ADH và BCK có:
AD = BC (tính chất hình bình hành)
B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)
Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)
⇒⇒ AH = CK (1)
Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)
⇒⇒ AK = CH (2)
Từ (1) và (2) suy ra: AHCK là hình bình hành
b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)
AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC
Vậy H, O, K thẳng hàng.
P.s:Mìh vẽ hình hơi xấu ;))