Chứng minh A= 2^25+2^24+2^23 chia hết cho 7
Chứng minh A=225+224+223 chia hết cho 7
225 + 224 + 223 = 223 . 22 + 223 . 2 + 223 = 223( 22 + 2 + 1 ) = 223 . 7 chia hết cho 7
=>ĐPCM
\(A=2^{23}\left(2^2+2+1\right)=2^{23}.7\)
=>ĐPCM
A = 2 + 2^2 + 2^3 + ... + 2^23 + 2^24 . Chứng minh rằng A chia hết cho 6 ; A chia hết cho 7
a) A = (2 + 22) + (23 + 24) +......+ (223 + 224)
A = 6 + 22.(2 + 22) +.....+222.(2 + 22)
A= 6 + 22.6 +.....+ 222.6
A = 6.(1+22+.....+222)
Vì 6 chia hết cho 6 nên 6.(1+22+.....+222) cũng chia hết cho 6
Hay A chia hết cho 6
b) A = (2 + 22 + 23)+.......+(222 + 223 + 224)
A= 14 + ....+ 221. (2 + 22 +23)
A= 14 +....+ 221 . 14
A = 14 .( 1 +...+ 221)
Vì 14 chia hết cho 7 nên 14 .( 1 +...+ 221) cũng chia hết cho 7
Hay A chia hết cho 7
Nhớ tk cho mình nha
Bài 1: Chứng minh rằng:
a) 165+ 215 chia hết cho 33
b) 88+ 220 chia hết cho 17
c) 4343 - 1717 chia hết cho 10
d) 1 - 2 + 22 - 23 + 24 - 25 + 26 - ... - 22021 + 22022 chia 6 dư 1
Bài 2: Chứng minh rằng:
a) \(\overline{aaa}\) ⋮ 37 b) (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a, \(\overline{aaa}\) \(⋮\) 37
\(\overline{aaa}\) = a x 111 = a x 3 x 37 ⋮ 37 (đpcm)
b, (\(\overline{ab}\) + \(\overline{ba}\)) ⋮ 11
\(\overline{ab}\) + \(\overline{ba}\) = \(\overline{a0}\) + b + \(\overline{b0}\) + a = \(\overline{aa}\) + \(\overline{bb}\) = a x 11 + b x 11 = 11 x (a+b)⋮11
Cho A = 1 + 2 + 22 + 23 + 24 +…299 Chứng minh rằng: A không chia hết cho 7
A=(1+2+2^2)+2^3(1+2+2^2)+...+2^96(1+2+2^2)+2^99
=7(1+2^3+...+2^96)+2^99 ko chia hết cho 7
1. Chứng minh rằng A = 225 + 224 + 223 chia hết cho 7
2. Chứng tỏ tổng của 4 số tự nhiên liên tiếp là 1 số chẵn
Toán nâng cao nhé
1. Ta có: A= \(2^{25}+2^{24}+2^{23}=2^{23}\left(2^2+2+1\right)_{ }\)
=>A= 2^23.7CHIA HẾT CHO 7
=> A CHIA HẾT CHO 7
Cho P = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng minh P chia hết cho 3.
Lời giải:
\(P=1+2+22+23+24+25+26+27\)
\(=(22+23)+24+(25+2)+(26+1)+27\)
\(=45+24+27+27+27=3.15+3.8+3.27\)
\(=3(15+8+27)\vdots 3\)
P= 1+2+22+23+24+25+26+27+28. Chứng minh rằng P chia hết cho 3
2+2^2+2^3+2^4+.......+2^23+2^24
chứng minh dãy số trên chia hết cho 7
Đặt dãy 2 + 2^2 + 2^3 + 2^4 + ... + 2^23 + 2^24 là A
Theo bài ra ta có : A = ( 2 + 2^2 + 2^3 ) + .... + ( 2^22 + 2^23 + 2^24 )
A = 2(1 + 2 + 2^2 ) + ....... + 2^22(1 + 2 + 2^2 )
A = 2 . 7 + ......... + 2^22 . 7
A = 7( 2 + ............. + 2^22 ) chia hết cho 7
=> A chia hết cho 7
=> 2 + 2^2 + 2^3 + 2^4 + ..... + 2^23 + 2^24 chia hết cho 7
( điều phải chứng minh )
2+2+2^2+2^3+2^4+...+2^23+2^24
= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^22+2^23+2^24)
= 2(1+2+2^2)+ 2^4(1+2+2^2)+....+2^22(1+2+2^2)
= (2+2^4+...+2^22)(1+2+2^2)
= (2+2^4+..+2^22)x7 chia hết cho 7
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$