Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Subin
Xem chi tiết
cao van duc
1 tháng 6 2018 lúc 14:07

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

Phạm Hữu Nam chuyên Đại...
Xem chi tiết
nguoi ta
30 tháng 8 2019 lúc 10:57

olm mootj trang web mat day nhat hanh tinh dot nhien tru 20 diem ma khong lien quan j khong tra loi cau hoi linh tinh ma cung tru diem mat day : bo lao

Phạm Hữu Nam chuyên Đại...
30 tháng 8 2019 lúc 11:02

liên quan j đến tôi

UTV Kool
Xem chi tiết
nthv_.
20 tháng 10 2021 lúc 23:48

Akai Haruma
20 tháng 10 2021 lúc 23:49

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

nthv_.
20 tháng 10 2021 lúc 23:59

undefined

toi la toi toi la toi
Xem chi tiết
Băng Dii~
1 tháng 10 2017 lúc 19:58

Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2  + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 =  (a2 + b2 - c2)2 - 4a2b2

= (a2 + b2 - c2 - 2ab).(a2 + b2  - c+ 2ab)  (1)

Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c> (|a - b|)2 = (a - b)2

=> c2 > a2 + b2 - 2ab => a2 + b - c2 - 2ab  < 0  (2)

lại có : a+ b > c => (a+ b) 2 > c=> a2 + b2  - c+ 2ab > 0  (3)

Từ (1)(2)(3) => A < 0 => đpcm

toi la toi toi la toi
1 tháng 10 2017 lúc 20:22

luôn luôn dương mà

Trần Trung Hiêu
Xem chi tiết
Le Nhat Phuong
9 tháng 9 2017 lúc 15:24

Từ giả thiết suy ra 
(a-b)^2+(b-c)^2+(a-c)^2=0 (nhân bung cái này sẽ ra cái giả thiết ban đầu). 
Từ đó suy ra: a=b, b=c và c=a. (Do tổng của 3 bình phương mà lại bằng 0 tức là các bình phương đó đều phải bằng 0). Suy ra tam giác đó đều 

P/s: Tham khảo nhé

Đinh Đức Hùng
9 tháng 9 2017 lúc 15:27

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh tam giác nên \(c>a-b;c>b-a;a+b+c>0;a+b>c\)

\(\Rightarrow c-a+b>0;c+a-b>0;a+b+c>0;a+b-c>0\)

Nên \(\left(c-a+b\right)\left(c+a-b\right)\left(a+b+c\right)\left(a+b-c\right)>0\)

Hay \(A>0\)(đpcm)

Ngô Bảo Châu
Xem chi tiết
HaNa
23 tháng 8 2023 lúc 15:07

\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\\ =\left(a^2+b^2-c^2+2ab\right)\left(a^2+b^2-c^2-2ab\right)\\ =\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2-c^2\right]\\ =-\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

Tổng 2 cạnh tam giác > cạnh thứ 3 nên cả 4 thừa số trên đều dương.

=> đpcm

giang đào phương
Xem chi tiết
Đoàn Đức Hà
18 tháng 6 2021 lúc 16:12

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)

\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)

(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))

Khách vãng lai đã xóa
Lê Vương Kim Anh
Xem chi tiết
Đặng Thế Vinh
27 tháng 9 2017 lúc 20:54

ta có 4a2b2c2=(2bc)2

=(2bc)2-(b2+c2-a2)

dùng hằng đăng thức thứ 3 + hằng đẳng thức thứ 1 ta được

=[-(b-c)2+a2].[(b+c)2-a2]

<=>[a2-(b-c)2].[(b+c)2-a2]

=(a+c-b).(a+b-c).(b+c-a).(b+c+a)

dùng bất đẳng thức tam giác bạn tự kết luận nha

๖Fly༉Donutღღ
27 tháng 9 2017 lúc 19:46

Bài này chỉ chứng minh được khi 2 tam giác vuông với 2 cạnh là a và b

Ta có :

\(c^2+b^2=c^2\)

\(\Rightarrow\)\(a^2+b^2-c^2=0\)          ( 1 )

Thay 1 vào :

\(4a^2b^2-0\)

\(=4a^2b^2\)

\(\Rightarrow\)

๖Fly༉Donutღღ
27 tháng 9 2017 lúc 19:47

bạn tự kết luận nha

Trần Trung Hiêu
Xem chi tiết