1 . so sánh các số sau
a, 85 và 3 . 47 . 85
b, 544 và 2112
1 Thu gọn biểu thức
D = 5 + 52 + 53 + .... +5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1 Thu gọn biểu thức
D = 5 + 52 + 53 + ... + 5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
So sánh các phân số sau bằng cách thuận tiện.
73/75 và 77/79
53/100 và 47/100
81/79 và 65/63
48/47 và 84/85
ta có: \(\frac{73}{75}>\frac{73}{79}>\frac{77}{79}\Rightarrow\frac{73}{75}>\frac{77}{79}\)
ta có: \(\frac{53}{100}< \frac{47}{100}\)
ta có: \(\frac{48}{47}>1;\frac{84}{85}< 1\Rightarrow\frac{48}{47}>\frac{84}{85}\)
So sánh các phân số sau:
a) − 4 7 + 3 − 7 v à 1
b) 3 5 v à 2 3 + − 1 5
So sánh các phân số sau:
a ) − 4 7 + 3 − 7 v à 1 ; b ) 3 5 v à 2 3 + − 1 5 . c ) 1 14 + − 4 7 v à 1 6 + − 3 4 ; d ) 1 2 + 2 3 + 3 4 + 4 5 + 5 6 v à 4
a ) − 1 < 1 ; b ) 9 15 > 7 15 ; c ) − 1 2 > − 7 12 ; d ) 71 20 < 4
so sánh
3 . 47 và 85
\(3\cdot4^7=3\cdot\left(2^2\right)^7=3\cdot2^{14}\)
\(8^5=\left(2^3\right)^5=2^{15}=2\cdot2^{14}\)
Mà `3>2`
Nên \(3\cdot4^7>8^5\)
So sánh các phân số bằng cách thuận tiện nhất
\(\dfrac{73}{75}\)và\(\dfrac{77}{79}\) \(\dfrac{53}{100}\)và\(\dfrac{47}{106}\) \(\dfrac{81}{79}\) và \(\dfrac{65}{63}\) \(\dfrac{48}{47}\) và \(\dfrac{84}{85}\)
1,
Ta có:
\(\dfrac{73}{75}=1-\dfrac{2}{75}\)
\(\dfrac{77}{79}=1-\dfrac{2}{79}\)
So sánh phân số \(\dfrac{2}{75}\) và \(\dfrac{2}{79}\)
Vì \(75< 79\) nên \(\dfrac{1}{75}>\dfrac{1}{79}\)
Vậy \(1-\dfrac{2}{75}< 1-\dfrac{2}{79}\)
Hay \(\dfrac{73}{75}< \dfrac{77}{79}\)
2,
Vì \(\dfrac{53}{100}>\dfrac{47}{100}>\dfrac{47}{106}\) nên \(\dfrac{53}{100}>\dfrac{47}{106}\)
3,
Ta có:
\(\dfrac{81}{79}=1+\dfrac{2}{79}\)
\(\dfrac{65}{63}=1+\dfrac{2}{63}\)
So sánh phân số \(\dfrac{2}{79}\) và \(\dfrac{2}{63}\)
Vì \(79>63\) nên \(\dfrac{81}{79}< \dfrac{65}{63}\)
Hay \(\Rightarrow1+\dfrac{2}{79}< 1+\dfrac{2}{63}\)
Vậy \(\dfrac{81}{79}< \dfrac{65}{63}\)
4,
\(\dfrac{48}{47}>1>\dfrac{84}{85}\)
Vậy \(\dfrac{48}{47}>\dfrac{84}{85}\)
so sánh các phân số sau
12 phần 49 và 13 phần 47
64phaanf 85 và 73 phần 81
19 phần 31 và 17 phần 35
67 phần 77 và 73 phần 83
12/49 > 13/47
64/85 > 73/81
19/31 > 17/35
67/77 > 73/83
1, không quy đồng mẫu số hãy so sánh các phân số sau:
a. 12/48 và 13/47
b. 415/395 và 572/581
a) có 12/48 < 13/48, 13/48 < 13/47
=> 12/48 < 13/47
b) có 415/395 > 1 , 572/581 <1
=> 415/395 > 572/581
So sánh các cặp số sau:
a) \(0,{85^{0,1}}\) và \(0,{85^{ - 0,1}}\).
b) \({\pi ^{ - 1,4}}\) và \({\pi ^{ - 0,5}}\).
c) \(\sqrt[4]{3}\) và \(\frac{1}{{\sqrt[4]{3}}}\).
tham khảo
a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).
Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).
b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).
Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).
c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).
Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).
Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).