Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Nguyễn Tâm
Xem chi tiết
Hồ Thu Giang
1 tháng 10 2015 lúc 22:19

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)

=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)

=> Đpcm

Câu 2 tớ đăng phía dưới rồi đó.

Câu 3 đang định đăng lên thì cậu đăng là sao hả?

Vân Nguyễn
Xem chi tiết
Vân Nguyễn
Xem chi tiết
Lightning Farron
8 tháng 8 2016 lúc 18:22

a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{\left(bk\right)^n+b^n}{\left(dk\right)^n+d^n}=\frac{\left(bk\right)^n-b^n}{\left(dk\right)^n-d^n}\)\(=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}\)

Xét VT \(\frac{a^n+b^n}{c^n+d^n}=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^n\left(k^n+1\right)}{d^n\left(k^n+1\right)}=\frac{b^n}{d^n}\left(1\right)\)

Xét VP \(\frac{a^n-b^n}{c^n-d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}=\frac{b^n\left(k^n-1\right)}{d^n\left(k^n-1\right)}=\frac{b^n}{d^n}\left(2\right)\)

Từ (1) và (2) ta có Đpcm

 

Lightning Farron
8 tháng 8 2016 lúc 18:16

đề câu a sửa 1 chút

Lightning Farron
8 tháng 8 2016 lúc 18:45

b)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{bk}{bk+b}=\frac{dk}{dk+d}\)

Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)

Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)

Từ (1) và (2) ta có Đpcm

Lực Nguyễn hữu
Xem chi tiết
kagamine rin len
26 tháng 6 2016 lúc 14:34

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)

Lê Thị Mai Trang
Xem chi tiết
Trần Hương Giang
9 tháng 3 2016 lúc 13:30

Từ a/b=c/d suy ra a/c=b/d 

ta có:

a/b=c/d=a+b/c+d=a-b/c-d

suy ra a^n+b^n/c^n+d^n=a^n-b^n/c^n-d^n (điều phải chứng minh)

Vậy: a^n+b^n/c^n+d^n=a^n-b^n/c^n-d^n

Nguyễn Thị Phương Lan
Xem chi tiết
Vân Nguyễn
Xem chi tiết
Sky _ Nguyễn
8 tháng 8 2016 lúc 16:30

a) Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)

b) Ta có:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Leftrightarrow\frac{a}{c}=\frac{a+b}{c+d}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

Bùi Nhâm Tú
Xem chi tiết
Vũ Mai Anh
Xem chi tiết