Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tài khoản mới
Xem chi tiết
Shinnôsuke
Xem chi tiết
Đinh Đức Hùng
5 tháng 2 2016 lúc 19:57

Do 20092010- 2 < 20092011- 2 ⇒ B < 1

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

Nhật Quỳnh
Xem chi tiết
hỏi đáp
4 tháng 5 2020 lúc 16:53

ta có : 

\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)

ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)

            \(\frac{2011}{2012}>\frac{2011}{2011+2012}\)

=> \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)

hay A>B

Khách vãng lai đã xóa
Ngọc Lục Bảo
Xem chi tiết
Michiel Girl mít ướt
3 tháng 9 2015 lúc 22:14

\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)

\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)

\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)

 

còn lại bó tay @@ 

Michiel Girl mít ướt
3 tháng 9 2015 lúc 22:08

\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)

và 

\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)

 

Nguyễn Thị Hoài An
Xem chi tiết
pham phan huy tuan
30 tháng 9 2017 lúc 21:33

VÌ A = 1/2010 > 1/2011 > 1/2012  (1)

     B = 1/2009 <1/1007 (2) 

TỪ (1) VÀ (2)  => 1/2010 < 1/1007

VẬY A < B

Nguyễn Thị Hoài An
30 tháng 9 2017 lúc 22:16

Sao bạn biết

Nguyễn Tuấn Minh
Xem chi tiết
tth_new
24 tháng 9 2017 lúc 8:21

Nhận xét : trong các phân số cùng tử, phân số nào có mẫu lớn hơn thì lớn hơn.

Ta nhận thấy rằng: \(\frac{1}{2010}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2011}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2012}< \frac{1}{2009}< \frac{1}{1007}\)

Ta thấy các phân số \(\frac{1}{2010};\frac{1}{2011};\frac{1}{2012}< \frac{1}{2009}< \frac{1}{2007}\)

\(\Rightarrow\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}< \frac{1}{2009}+\frac{1}{1007}\)

Nguyễn Tuấn Minh
Xem chi tiết
...
Xem chi tiết
Lê Tài Bảo Châu
27 tháng 3 2019 lúc 22:41

áp dụng \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có : \(B=\frac{9^{2009}+1}{9^{2010}+1}< 1\)

\(\Rightarrow B< \frac{9^{2009}+1+8}{9^{2010}+1+8}\)

\(\Rightarrow B< \frac{9.\left(9^{2008}+1\right)}{9.\left(9^{2009}+1\right)}=\frac{9^{2008}+1}{9^{2009}+1}\)

Vậy B < A

# APTX _ 4869 _ : ( $>$...
27 tháng 3 2019 lúc 22:42

    B = 92009 + 1/92010 + 1 < 1

=> B < 92009 + 1 + 8 / 92010 + 1 + 8 = 92009 + 9 / 92010 + 9 = 9 (92008 + 1 ) / 9 ( 92007 + 1) = A

=>B < A 

              #Hoq chắc _ Baccanngon

Nguyễn Duy Long
27 tháng 3 2019 lúc 22:45

\(\frac{9^{2008}+1}{9^{2009}+1}=\frac{9^{2009}+9}{9^{2010}+9}>\frac{9^{2009}+1}{9^{2010}+1}\)

Kieu Minh Hien
Xem chi tiết
FC TF Gia Tộc và TFBoys...
3 tháng 1 2016 lúc 18:52

Xét dạng tổng quát : so sánh a/b và (a+k)/(b+k) với a,b,k là các số dương 
Ta có : (a/b) *(1/b) =1/ab 
(a+k)/(b+k) * (1/b) = (a+k)/(ab+ak) 

lại nhân với 1/(a+k) 

ta có (1/ab)*1/(a+k) = 1/(a*a*b+a*b*k) (1) 
(a+k)/(ab+ak) * 1/(a+k) = 1/(ab+ak) (2) 

xét thấy (1) < (2) nên => (a+k)/(b+k) > a/b 

kết luận 2009/2010 < 2010/2011

Nguyễn Ngọc Quý
3 tháng 1 2016 lúc 18:54

Lấy 1 trừ từng phân số

\(1-\frac{2009}{2010}=\frac{1}{2010};1-\frac{2010}{2011}=\frac{1}{2011}\)

Vì 1/2011 < 1/2010

Nên \(\frac{2009}{2010}<\frac{2010}{2011}\)

Trần Hoàng Khánh Linh
3 tháng 1 2016 lúc 18:56

2009/2010 > 2010/2011

tick nha bạn