Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Incursion_03
Xem chi tiết
Incursion_03
21 tháng 6 2019 lúc 20:54

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

Incursion_03
21 tháng 6 2019 lúc 21:14

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

Incursion_03
21 tháng 6 2019 lúc 21:41

38, Hưng Yên

Cho x;y;z > 0 thỏa mãn \(x^2+y^2+z^2=3xyz\)

Tìm \(P_{max}=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)(Chỗ này phân số thứ 2 đề ở tử là y2 không phải y4 cô nhé )

                         Giải

Áp dụng bđt Cô-si có

\(x^4+yz\ge2x^2\sqrt{yz}\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2\sqrt{yz}}\)

Áp dụng bđt Cô-si \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

                    \(\Rightarrow\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow\frac{x^2}{x^4+yz}\le\frac{1}{2\sqrt{yz}}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự \(\frac{y^2}{y^4+zx}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{z}\right)\) 

                 \(\frac{z^2}{z^4+xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Khi đó \(VT\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

                                                                                                       \(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\)

                                                                                                       \(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\)

                                                                                                        \(=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu "=" tại x = y = z =1

vũ tiền châu
Xem chi tiết
Lầy Văn Lội
8 tháng 10 2017 lúc 16:38

Bài 2 : đã cm bên kia

Bài 1: :| 

we had điều này:

\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)

\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)

Xòng! bunyakovsky

P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<

Vo Trong Duy
Xem chi tiết
Đen đủi mất cái nik
Xem chi tiết
Nguyễn Tiến Đức
10 tháng 9 2018 lúc 19:41

tự ra câu hởi tự trả lời à bạn

Đen đủi mất cái nik
10 tháng 9 2018 lúc 19:44

tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á

Hi nguyễn
Xem chi tiết
Vũ Trọng Nghĩa
29 tháng 7 2016 lúc 1:05

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2020 lúc 22:21

Mới nghĩ ra 3 câu:

a/ \(\frac{ab}{\sqrt{\left(1-c\right)^2\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1+c\right)}}\le\frac{ab}{2\sqrt{ab\left(1+c\right)}}=\frac{1}{2}\sqrt{\frac{ab}{1+c}}\)

\(\sum\sqrt{\frac{ab}{1+c}}\le\sqrt{2\sum\frac{ab}{1+c}}\)

\(\sum\frac{ab}{1+c}=\sum\frac{ab}{a+c+b+c}\le\frac{1}{4}\sum\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)=\frac{1}{4}\)

c/ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\Rightarrow x+y+z=2\)

\(VT=\sum\frac{x^3}{\left(2-x\right)^2}\)

Ta có đánh giá: \(\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\) \(\forall x\in\left(0;2\right)\)

\(\Leftrightarrow2x^3\ge\left(2x-1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow9x^2-12x+4\ge0\Leftrightarrow\left(3x-2\right)^2\ge0\)

d/ Ta có đánh giá: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)

Khách vãng lai đã xóa
bach nhac lam
11 tháng 2 2020 lúc 21:42

Akai Haruma, Nguyễn Ngọc Lộc , @tth_new, @Băng Băng 2k6, @Trần Thanh Phương, @Nguyễn Việt Lâm

Mn giúp e vs ạ! Thanks!

Khách vãng lai đã xóa
bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 11 2019 lúc 18:32

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

Khách vãng lai đã xóa
bach nhac lam
17 tháng 11 2019 lúc 17:54

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước

Khách vãng lai đã xóa
hung
Xem chi tiết
Nhật Kim Anh
10 tháng 8 2017 lúc 14:43

hi kết bạn nha

Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 6 2020 lúc 11:40

\(z\ge x+y\Rightarrow\frac{z}{x+y}\ge1\)

\(VT=\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)

\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{1}{z^2}\right)\)

\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right)\)

\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+8\left(\frac{z}{x+y}\right)^2+5\)

\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+\frac{1}{2}\left(\frac{z}{x+y}\right)^2+\frac{15}{2}\left(\frac{z}{x+y}\right)^2+5\)

\(VT\ge\frac{1}{2}.2\sqrt{\left(\frac{x+y}{z}\right)^2\left(\frac{z}{x+y}\right)^2}+\frac{15}{2}.1^2+5=\frac{27}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\)