cho \(4a^2+b^2=5ab\)và 2a>b>0
tính\(P=\frac{ab}{4a^2-b^2}\)
cho 4a^2+b^2=5ab và 2a>b>0.Tính P=ab/4a^2-b^2
Cho 4a2+b2=5ab và 2a>b>0.Tính \(P=\frac{ab}{4a^2-b^2}\)
ta có\(4a^2+b^2=5ab\)
\(=4a^2+b ^2-4ab-ab=0\)
\(=\left(2a-b\right)^2-ab=0\)
\(=\left(2a-b\right)^2=ab\)
thay (2a-b)2 = ab vào P ta được
\(P=\frac{\left(2a-b\right)^2}{\left(2a-b\right)\left(2a+b\right)}=\frac{2a-b}{2a+b}\)
cho 4a^2 + b^2 = 5ab và 2a>b>0
Tính: P = ab/(4a^2-b^2)
cho 4a2 + b2 =5ab với 2a > b > 0
tính M = \(\frac{ab}{4a^2-b^2}\)
\(4a^2+b^2=5ab\)
\(4a^2-5ab+b^2=0\)
\(4a^2-4ab-ab+b^2=0\)
\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\left(a-b\right)\left(4a-b\right)=0\)
\(\left[\begin{array}{nghiempt}a-b=0\\4a-b=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}a=b\\4a=b\end{array}\right.\)
mà \(2a>b>0\)
\(\Rightarrow a=b\)
Thay a = b vào M, ta có:
\(M=\frac{b\times b}{4b^2-b^2}\)
\(=\frac{b^2}{3b^2}\)
\(=\frac{1}{3}\)
Vậy . . .
Cho 4a2 + b2 = 5ab và 2a>b>0. Tính giá trị của biểu thức M= \(\frac{ab}{4a^2-b^2}\)
4a^2 + b^2=5ab
<=>4a^2 + b^2 - 5ab=0
<=>4a(a - b) - b(a - b)=0
<=> (a -b )(4a - b)=0
<=>a-b=0 ; a=b hoặc 4a - b=0 ; a=b/4(loại)
đề lúc đầu sai :v
ĐKXĐ : \(2a\ne b\)\(;\)\(2a\ne-b\)
\(4a^2+b^2=5ab\)\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\4a=b\end{cases}}}\)
+) Với \(a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{a^2}{3a^2}=\frac{1}{3}\)
+) Với \(4a=b\)\(\Rightarrow\)\(M=\frac{ab}{4a^2-b^2}=\frac{a.4a}{4a^2-16a^2}=\frac{4a^2}{-12a^2}=\frac{-1}{3}\)
...
cho hai số thực a,b thỏa mãn: 2a>b>0 và \(4a^2+b^2=5ab\).tính A=\(\frac{ab}{4a^2-b^2}\)
Tính A = \(\frac{ab}{4a^2-b^2}\) biết 2a > b > 0 và 4a2 + b2 = 5ab
1/3 còn cách giải chờ mình 1 chút
Ta có: \(4a^2+b^2-5ab=0\Leftrightarrow4a^2-4ab+b^2-ab=0\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
nên \(a=b\) hoặc \(4a=b\)
Vì \(2a>b>0\Rightarrow\frac{2a}{b}>1\), ta lấy \(a=b\)
Thay \(a=b\) vào phân thức \(\frac{ab}{4a^2-4b^2}\), ta được:
\(A=\frac{1}{3}\)
Cho: \(4a^2+b^2=5ab\) và \(2a>b>0\)
Tính: \(P=\frac{ab}{4a^2-b^2}\)
ta có
\(4a^2+b^2=5ab\Leftrightarrow\left(4a^2-4ab\right)+\left(b^2-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)+\left(4a-b\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b=a\\b=4a\end{cases}}\)
thế a = b vào M ta được
\(M=\frac{a.a}{4a^2-a^2}=\frac{1}{3}\)
thế b=a4 vào M ta được
\(M=\frac{a.4a}{4a^2-16a^2}=-\frac{1}{3}\)
nguồn https://olm.vn/hoi-dap/detail/64680575994.html
cho \(4a^2+b^2=5ab\left(2a>b>0\right)\)
tính A=\(\frac{ab}{4a^2-b^2}\)
Ta có :
\(4a^2+b^2-4ab=5ab-4ab\)
\(\Rightarrow\left(2a-b\right)^2=ab\)
Lại có :
\(4a^2+b^2+4ab=5ab+4ab\)
\(\Rightarrow\left(2a+b\right)^2=9ab\)
\(\Rightarrow\left(2a+b\right)^2\left(2a-b\right)^2=ab.9ab\)
\(\left(4a^2-b^2\right)^2=\left(3ab\right)^2\)
Mà \(2a>b>0\Rightarrow\hept{\begin{cases}4a^2-b^2>0\\a>0;b>0\rightarrow3ab>0\end{cases}}\)
\(\Rightarrow4a^2-b^2=3ab\)
\(\Rightarrow A=\frac{ab}{3ab}=\frac{1}{3}\)
Vậy ...
Mình mới học lớp 5 thôi nên không biết gì .
~~~ Chúc bạn học giỏi ~~~