Giải pt no nguyên:
\(6x^2-26x-6y^2+39y-5xy-5=0\)
giải pt : \(x^2-5xy+6y^2+1=0\)
Pt này ko giải được (có vô số nghiệm)
Nếu đề là pt nghiệm nguyên thì còn có khả năng giải :)
Giải pt nghiệm nguyên \(2x^2+7y^2+3x-6y=5xy-7\)
\(2x^2+7y^2+3x-6y=5xy-7\)
\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)
Thấy ngay \(VT>0\)
=> Pt vô nghiệm
Sure ?
\(2x^2+7y^2+3x-6y=5xy-7\)
<=> \(16x^2+56y^2+24x-48y=40xy-56\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)
Mà \(31y^2-18y+47>0\)với mọi y
=> (1) vô nghiệm
1) 6x2-6y2-5xy+8x+y+13=0
2) 9x2-6y2+3xy-9x+y-5=0
3)6x2-2y2-4xy-31x-5y+13=0
4) 2x2-2y2+3xy-12x+11y-17=0
a) Giải pt: x + \(\sqrt{\left(1-x^2\right)}\)= 1
b) Giat hệ pt: 6x + 6y = 5xy
\(\frac{4}{x}-\frac{3}{y}\)=1
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Tìm các số nguyên x, y thỏa mãn: x^2+5xy+6y^2+x+2y-2=0
(x2 + 4xy + 4y2) + xy + 2y2 + x + 2y = 2
(x + 2y)2 + (x + 2y)(y + 1) = 2
(x + 2y)(x + 3y + 1) = 2
TH1: \(\hept{\begin{cases}x+2y=1\\x+3y+1=2\end{cases}}\)<=>\(\hept{\begin{cases}x=1\\y=0\end{cases}}\)(thỏa mãn)
TH2: \(\hept{\begin{cases}x+2y=2\\x+3y+1=1\end{cases}}\)<=> \(\hept{\begin{cases}x=6\\y=-2\end{cases}}\)(thỏa mãn)
TH3: \(\hept{\begin{cases}x+2y=-1\\x+3y+1=-2\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)(thỏa mãn)
TH4: \(\hept{\begin{cases}x+2y=-2\\\text{x+3y+1=-1}\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=0\end{cases}}\)(thỏa mãn)
Giai pt nghiem nguyen : x^2+6y^2-5xy-5y=3-3x
1.
a, Giải pt: \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
b, Giải hệ pt: \(\left\{{}\begin{matrix}x^2+y^2=2\\\left(x+2y\right)\left(2+3y^2+4xy\right)=27\end{matrix}\right.\)
nguyễn thiện nhân đâu rùi giải hộ coi
tìm nghiệm nguyên của pt: 5xy-2y2-2x2+2=0
ha ha ha
\(\Leftrightarrow4xy-2y^2+xy-2x^2=-2\)
\(\Leftrightarrow2y\left(2x-y\right)-x\left(2x-y\right)=-2\)
\(\Leftrightarrow\left(2x-y\right)\left(2y-x\right)=-2\)
Ta có -2=1.(-2)=2.(-1)
Lập bạng xét giá trị ( mục đích là cho mau ko ghi dài dòng)
2x-y | 1 | -2 | 2 | -1 |
2y-x | -2 | 1 | -1 | 2 |
x | 0 | -1 | 1 | 0 |
y | -1 | 0 | 0 | 1 |
Vậy các cặp số nguyên (x;y)=(0;1),(-1;0),(1;0),(0;1)
Bạn chọn mình t i c k cho mình 1 cái nha cảm ơn
ghi sắp xong bấm lộn nút backspace mất tiu hết huhu