Tính tổng sau
a, S=1+2+3+4....98+99+100
b, S=1+2+3+4....2014+2015+2016
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Cô ơi dấu hiệu chia hết cho 5 em mở không được
Tính tổng sau : A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + ... + 99 - 100
B=1–2- 3+4+5-6-7+8+...+97-98-99+100
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
Tính các tổng sau
a) S1= 1+(-2)+3+(-4)+...+(-2014)+2015
b)S2 =(-2)+4+(-6)+8+...+(-2014)+2016
c) S3 =1+(-3)+5+(-7)+...+2013+(-2015)
d)S4 =(-2015)+(-2014)+(-2013)+...+2015+2016
a) S1 = 1 + (-2) + 3 + (-4) + ... + (-2014) + 2015
S1 = [1 + (-2)] + [3 + (-4)] + ... + [2013 + (-2014)] + 2015
S1 = (-1) + (-1) + ... + (-1) + 2015
2014 : 2 = 1007
S1 = (-1) . 1007 + 2015
S1 = (-1007) + 2015
S1 = 1008
b) S2 = (-2) + 4 + (-6) + 8 + ... + (-2014) + 2016
S2 = [(-2) + 4] + [(-6) + 8] + ... + [(-2014) + 2016]
S2 = 2 + 2 + ... 2
2016 : 2 = 1008
S2 = 2 . 1008
S2 = 2016
c) S3 = 1 + (-3) + 5 + (-7) + ... + 2013 + (-2015)
S3 = [1 + (-3)] + [5 + (-7)] + ... + [2013 + (-2015)]
S3 = (-2) + (-2) + ... + (-2)
(2015 - 1) : 2 + 1 = 1008 : 2 = 504
S3 = (-2) . 504
S3 = -1008
d) S4 = (-2015) + (-2014) + (-2013) + ... + 2015 + 2016
S4 = 2016 + [(-2015) + 2015] + [(-2014) + 2014] + ... + [(-1) + 1] + 0
S4 = 2016 + 0
S4 = 2016
a, \(S_1=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\\ =1+\left[\left(-2\right)+3\right]+\left[\left(-4\right)+5\right]+...+\left[\left(-2014\right)+2015\right]\\ =1+1+...+1=1008\)
b, làm tương tự phần a
c, cũng làm tương tự
d, \(S_4=\left(-2015\right)+\left(-2014\right)+...+2015+2016\\ =\left[\left(-2015\right)+2015\right]+\left[\left(-2014\right)+2014\right]+...+\left[\left(-1\right)+1\right]+0+2016\\ =0+0+...+0+2016=2016\)
Tính các tổng sau
\(a,S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(b,S=\left(-2\right)+4+\left(-6\right)+8+...+\left(-2014\right)+2016\)
\(c,S=1+\left(-3\right)+5+\left(-7\right)+...+2013+\left(-2015\right)\)
\(d,S=\left(-2015\right)+\left(-2014\right)+\left(-2013\right)+...+2015+2016\)
a) \(S=1+\left(-2\right)+3+\left(-4\right)+...+\left(-2014\right)+2015\)
\(\Leftrightarrow S=\left(1-2\right)+\left(3-4\right)+....+\left(2013-2014\right)+2015\)
Vì từ 1 đến 2014 có 2014 số hạng => có 1007 cặp => Có 1007 cặp -1 và số 2015
\(\Rightarrow S=\left(-1\right)\cdot1007+2015\)
<=>S=-1007+2015
<=> S=1008
Tính tổng: S = 2020 + 2019 – 2018 – 2017 + 2016 + 2015 – 2014 – 2013 + … + 4 + 3 – 2 – 1 . Vậy S = .................
S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1
= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 ) (có tất cả 2020 : 4 = 505 nhóm)
= 4 + 4 + ... + 4
= 4. 505 = 2020
Vậy S = 2020.
S= 2020
Bạn huyền đúng rồi đó .
hok tốt
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008
S=1-2+3-4+5-6-...-2014-2015+2016. Tính S
Đề sai hình như đề phải là S=1-2+3-4+5-6(+)...(+)2014-2015+2016
cho S = 1-1/2+1/3-1/4+...-1/2014+1/2015
P = 1/1008+1/1009+...+1/2014+1/2015
tính (S-P)^2016
Ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2014}+\frac{1}{2015}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)=\frac{1}{1008}+\frac{1}{1009}+....+\frac{1}{2015}\)
Mà \(P=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Leftrightarrow S-P=0\) \(\Rightarrow\left(S-P\right)^{2016}=0\)