Tìm x,y biết
2^x+12y=5^y
x+y=5;y+z=7;z+x=20
biết2( x+y+z)=32
Tính x;y và z
Ta có : 2(x+y+z)=32\(\Rightarrow\) x+y+z=16
Mà x+y=5 \(\Rightarrow\) z=16-5=11
y+z=7 \(\Rightarrow\) y=7-11=-4
z+x=20\(\Rightarrow\) x=20-11=9
tìm x biết
2^5x+5 = 16^x+3
\(\Leftrightarrow5x+5=4x+12\)
hay x=7
tìm x, biết
2.(3/5)^x + 1/5 =2/25^3
Tìm x,y,z
a) - 2 : x= -x : 8
b) x/2 = y/5 và x+y= - 21
c)7x=3y ;12y=7z Và 3x + 2y+z=14
a) Ta có :\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=2k\) ; \(y=5k\)
\(x+y=-21\Rightarrow2k+5k=-21\)
\(\Leftrightarrow7k=-21\Rightarrow k=-3\)
Với \(k=-3\Rightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}\Rightarrow}\hept{\begin{cases}x--3.2=-6\\y=-3.5=-15\end{cases}}\)
Vậy ........
c) \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\left(1\right)\)
\(12y=7z\Rightarrow\frac{y}{7}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{z}{12}=\frac{3x}{9}=\frac{2y}{14}=\frac{z}{12}=\frac{3x+2y+z}{9+14+12}=\frac{14}{35}=\frac{2}{5}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{2}{5}\\\frac{y}{7}=\frac{2}{5}\\\frac{z}{12}=\frac{2}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{14}{5}\\z=\frac{24}{5}\end{cases}}\)
Cho các số thực x,y thỏa mãn \(\sqrt{x+5}-y^3=\sqrt{y+5}-x^3\)
Tìm GTLN của biểu thức \(P=x^2-3xy+12y-y^2+2018\)
Tìm x,y,z biết:
3) 6x=10y=14z và x+y+z =50
4) 5x= 12y= 8z và x+y+z = 46
5) 6x= 4y=2z và x-y-z= 27
3)
\(6x=10y=14z\)
\(\Rightarrow\frac{6x}{210}=\frac{10y}{210}=\frac{14z}{210}\)
\(\Rightarrow\frac{x}{35}=\frac{y}{21}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{35}=\frac{y}{21}=\frac{z}{15}=\frac{x+y+z}{35+21+15}=\frac{50}{71}\)
\(\Rightarrow\begin{cases}x=\frac{1750}{71}\\y=\frac{1050}{71}\\z=\frac{650}{71}\end{cases}\)
4)
\(5x=12y=8z\)
\(\Rightarrow\frac{5x}{120}=\frac{12y}{120}=\frac{8z}{120}\)
\(\Rightarrow\frac{x}{24}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{24}=\frac{y}{10}=\frac{z}{15}=\frac{x+y+z}{24+10+15}=\frac{46}{49}\)
\(\Rightarrow\begin{cases}x=\frac{1196}{49}\\y=\frac{460}{49}\\z=\frac{690}{49}\end{cases}\)
5)
\(6x=4y=2z\)
\(\Rightarrow\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
Áp dụng tc chất của dãy tỉ số bằng nhau Ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x-y-z}{2-3-6}=\frac{27}{-7}\)
\(\Rightarrow\begin{cases}x=\frac{54}{-7}\\y=\frac{81}{-7}\\z=\frac{162}{-7}\end{cases}\)
Cho x,y là các số thực thỏa mãn: \(\sqrt{x^2+5}-y^3=\sqrt{y^2+5}-x^3\). Tìm GTLN của biểu thức: \(P=x^2-3xy+12y-y^2+2021\)
Cho các số thự x, y thỏa mãn \(\sqrt{x+5}-y^3=\sqrt{y+5}-x^3\)
Tìm giá trị lướn nhất của biểu thức \(P=x^2-3xy+12y-y^2+2018\)
Từ tỉ lệ thức 10x-12y/3=12y-15z/4=15z-10x/5 ta được tỉ lệ thức
A. x/15=y/10=z/12
B. x/10=y/12=z/15
C. x/6=y/5=z/4
D. x/4=y/5=z/6