cho hình thang ABCD(AB//CD)gọi K và H lần lượt là trung điểm của AB và CD,O là giao điểm của 2 đường chéo .CMR:3 điểm H,O,K thẳng hàng
Giải giúp mình nha
Cho hình thang cân ABCD (AB//CD).Gọi H,K lần lượt là trung điểm của AB,CD.Gọi O là giao điểm của hai đường chéo AC và BD.Chứng minh:H,K,O thẳng hàng
Tham khảo cách chứng minh "Bổ đề hình thang":
http://vuontoanhoc.blogspot.com/2016/06/hinh-hoc-8-bo-e-hinh-thang.html
Cho hình thang cân ABCD (AB//CD).Gọi H,K lần lượt là trung điểm của AB,CD.Gọi O là giao điểm của hai đường chéo AC và BD.Chứng minh:H,K,O thẳng hàng
GIÚP MK VS MK ĐNG CẦN GẤP!
Gấp lắm ah @Như Trương Thị
Cho hình thang ABCD ( AB//CD; AB<CD). Gọi O là giao điểm hai đường chéo AC và BD.
a. Cm: △OAB∼△OCD
b. Đường thẳng đi qua O và song song với AB cắt AD, BC lần lượt tai H và K. Cm: O là trung điểm của HK
c. Cm: HK/AB + HK/CD= 2
Giúp mình với huhu sắp thi òi
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB\(\sim\)ΔOCD
b: Xét hình thang ABCD có HK//AB//CD
nên AH/AD=BK/BC(1)
Xét ΔADC có OH//DC
nên OH/DC=AH/AD(2)
Xét ΔBDC có OK//DC
nên OK/DC=BK/BC(3)
Từ (1), (2) và (3) suy ra OH=OK
hay O là trung điểm của HK
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm hai đường chéo AC và BD. Đường thẳng qua O vuông góc với AB và CD lần lượt tại H và K. Chứng minh OH/OK = AB/CD
a;Vì AB//CD nên theo định lí Ta-lét ta có:
OA/OC=OB/ODOAOC=OBOD
⇒OA.OD=OC.OB⇒OA.OD=OC.OB
b;Xét ΔAOHΔAOH và ΔCOKΔCOKcó:
AHOˆ=CKO=90oˆAHO^=CKO=90o^
AOHˆ=COKˆAOH^=COK^ (hai góc đối đỉnh)
⇒ΔAOH ΔCOK(g.g)⇒ΔAOH ΔCOK(g.g)
⇒OAOC=OHOK(1)⇒OAOC=OHOK(1)
Vì AB//CD nên theo hệ quả của định lí Ta-lét ta có
ABCD=OAOC(2)ABCD=OAOC(2)
Từ 1 và 2 ta có:
OHOK=ABCD
cho hinh thang ABCD ( AB // CD ) có M là giao của AD và BC, N là giao điểm của 2 đường chéo. Gọi I và K lần lượt là giao điểm của MN với AB và CD. CMR: I là trung điểm của AB, K là trung điểm của CD
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
cho hình thang cân ABCD có AB//CD, AD<CD. Gọi O là giao điểm của hai đường thẳng AD và BC
a) CMR: tam giác OAD cân
b) gọi I là trung điểm của AB
K là trung điểm của CD
c) CMR: O;I;K thẳng hàng
cho hình thang cân ABCD (AB//CD, AB<CD). Gọi O là giao điểm của hai đường thẳng AD và BC
a) CMR: tam giác OAB cân
b)gọi I là trung điểm của AB, K là trung điểm của CD. CMR: O, I , K thẳng hàng
a) Xét tam giác ABD và tam giác BAC có
AB chung
goc BAD = góc ABC ( ABCD là hình thang cân )
AD=BC ( ABCD là hình thang cân )
Vậy tam giác ABD = tam giác BAC ( c-g-c)
=> góc ABD = góc BAC => tam giác AOB cân tại O
b)
Ta có KD=KC=> K nằm trên đường trung trực DC (*)
Ta lại có :
OD=DB-OB
OC=AC-AO
mà BD=AC ( 2 đường chéo hình thang cân ABCD )
OB=AO (tam giác AOB cân tại O)
=> OD=OC => O nằm trên đường trung trực DC (**)
Xét tam giác IAD và tam giác IBC có
AI=IB( I là trung điềm AB)
góc IAD = góc IBC ( ABCD là hình thang cân)
AD=AB ( ABCD là hình thang cân)
Vậy tam giác IAD = tam giác IBC(c-g-c)
=> ID=IC=> I nằm trên đường trung trực DC (***)
Từ (*)(**)(***)=> I,O,K thẳng hàng
nha . Chúc bạn học tốt
Cho hình thang cân ABCD ( AB // CD, AB < CD ), O là giao điểm của hai đường chéo, I là giao điểm của AD và BC.
a, C/minh: OA = OB, OC = OD.
b, Gọi M, N lần lượt là trung điểm các cạnh AB; CD. CMR: I, M, O, N thẳng hàng.
Cho hình bình hành ABCD , trên đường chéo BD lấy 2 điểm M,N = MN = ND . a, cmr AMCN là hbh ; b, Gọi K là giao điểm của M & AB , H là gđ của AN & CD , O là trung điểm của MN , Cmr H,O,K thẳng hàng.