Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Kim Giáp
Xem chi tiết
truong thuy quynh
11 tháng 10 2015 lúc 15:06

a=13,b=14    a=14, b=15   a=15, b=16

Phương Mĩ Linh
11 tháng 10 2015 lúc 15:21

Cho hai số tự nhiên a và b thỏa mãn 12 < a < b< 16. Số cặp số a và b thỏa mãn là 
khi a là các số 13 , 14 
trong khi b = a + 1 , tức là khi a = 13 , thì b = a + 1 = 14 , a = 14 thì b= 14 + 1 = 15 
các cặp số a , b cần tìm là (13 , 14) , (14 , 15) 

Nguyen Nha Uyen
13 tháng 6 2016 lúc 0:52

a bang 13 b bang ăô

Trịnh Đức Thịnh
Xem chi tiết
VICTOR_Phát Phan Cả
21 tháng 5 2016 lúc 18:26

Ta có:

   12<13<14<16

   12<14<15<16

   12<13<15<16

Vậy có 3 cặp số thỏa mãn

o0o Vi _Sao _Dem _Trang...
21 tháng 5 2016 lúc 18:23

12<a<b<16>

a = 13 , b= 14

a=13 , b= 15

a=14 , b= 15

Suy ra : co 3 cap so thoi !!!

Nguyễn Hoàng Tiến
21 tháng 5 2016 lúc 18:25

a=13 và b=14

a = 13 và b = 15

a=14 và b = 15

trần thị hạnh
Xem chi tiết
Nguyễn Văn Biên
21 tháng 7 2014 lúc 16:24

2 cặp số:

13 và 14, 14 và 15

nguyen nhat hao
9 tháng 10 2014 lúc 9:51

3 cặp số :

Là 13 và 14 ; 13 và 15 ; 14 và 15 .

Lê Duy Hoàng
30 tháng 1 2016 lúc 19:40

có tất cả 2 cặp số

13 và 14;14 và 15

 

phan anh lã
Xem chi tiết
Nguyễn Hoàng Minh
1 tháng 12 2021 lúc 23:24

\(a+b=10\Rightarrow0< a,b< 10\)

Mà a,b là hợp số nên \(a+b=10=6+4\)

Với \(\left\{{}\begin{matrix}a=6\\b=4\end{matrix}\right.\Rightarrow a^b=6^4=1296;b^a=4^6=4096\)

Với \(\left\{{}\begin{matrix}a=4\\b=6\end{matrix}\right.\Rightarrow a^b=4^6=4096;b^a=6^4=1296\)

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
23 tháng 1 2021 lúc 23:22

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

Nguyễn Việt Lâm
23 tháng 1 2021 lúc 23:54

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Yu Kong
Xem chi tiết
Akai Haruma
8 tháng 3 2021 lúc 21:41

Lời giải:

$a-b=2(a+b)=2a+2b$

$a-2a=b+2b$ hay $-a=3b\Rightarrow a=-3b\Rightarrow \frac{a}{b}=-3$

Thay vào điều kiện đề bài:

$a-b=\frac{a}{b}$

$-3b-b=-3$

$-4b=-3\Rightarrow b=\frac{3}{4}$

$a=-3b=\frac{-9}{4}$$

Hoàng Phương Minh
Xem chi tiết
Hoàng Phương Minh
10 tháng 9 2018 lúc 7:58

1 chứng minh a=-3b 

2 tính  tỉ số a/b

3 tìm a và b

Nguyễn Đỗ Ngọc Minh
Xem chi tiết
Akai Haruma
15 tháng 9 2021 lúc 18:34

Lời giải:
$|a+b|=|a-b|$

$\Rightarrow |a+b|^2=|a-b|^2$

$\Leftrightarrow (a+b)^2=(a-b)^2$

$\Leftrightarrow a^2+2ab+b^2=a^2-2ab+b^2$

$\Leftrightarrow 4ab=0$

$\Rightarrow a=0$ hoặc $b=0$ (đpcm)

Minh Thư
Xem chi tiết
Mei Shine
17 tháng 12 2023 lúc 19:32

Ta có:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[a^2+2ab+b^2-a-b+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(2a^2+2b^2-2ab-2a-2b+2\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2-2a+1+b^2-2b+1+a^2-2ab+b^2\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b^2\right)\right]=0\)

.......

Mình nghĩ đề a, b là 2 số dương nha, nếu a,b là 2 số dương thì mình loại được trường hợp a+b+1=0 nhé

Nguyễn_Tống_Duy_Đan
Xem chi tiết
Nguyen Ngoc Minh Ha
9 tháng 8 2016 lúc 19:45

Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.

=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.

     3 (a + b) = 15

=> a + b      = 15 : 3

=> a + b      = 5               (1)

     5 (a - b) = 15

=> a - b      = 15 : 5

=> a - b      = 3                (2)

Từ (1) và (2) => a = 4 và b = 1