Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:02

a: ta có: \(M=\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{a\left(\sqrt{ab}-a\right)+b\left(\sqrt{ab}+b\right)}{\left(\sqrt{ab}+b\right)\left(\sqrt{ab}-a\right)}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)\cdot\sqrt{a}\cdot\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\)

\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}-\dfrac{a^2-b^2}{\sqrt{ab}\left(a-b\right)}\)

\(=\dfrac{-\sqrt{ab}}{\sqrt{ab}\left(a-b\right)}\)

\(=-\dfrac{1}{a-b}\)

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:05

b: Thay \(a=\sqrt{5}+1\) và \(b=\sqrt{5}-1\) vào M, ta được:

\(M=\dfrac{-1}{\sqrt{5}+1-\sqrt{5}+1}=\dfrac{-1}{2}\)

Võ Thùy Trang
Xem chi tiết
Hoàng Anh Thắng
25 tháng 9 2021 lúc 19:26

a)A=\(2\sqrt{3}-8\sqrt{3}+7\sqrt{3}=\sqrt{3}\)

b)B\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}=3-\sqrt{5}+\sqrt{5}-2=1\)

d)\(=\dfrac{\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)}{1}+1-\sqrt{5}-\dfrac{11\left(2\sqrt{5}-3\right)}{11}=5\sqrt{5}+5-10-2\sqrt{5}+1-\sqrt{5}-2\sqrt{5}+3=-1\)

Nguyễn Đức Lâm
Xem chi tiết
Akai Haruma
25 tháng 5 2021 lúc 1:57

Gọn thế này rồi thì tính gì nữa bạn?

Anh Quynh
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 10 2021 lúc 19:50

1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)

2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)

3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)

4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)

 

nood
Xem chi tiết
Akai Haruma
18 tháng 9 2023 lúc 0:29

Lời giải:
a.

\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)

$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.

$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$

$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.

$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$

$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$

$=1(3+\sqrt{2})=3+\sqrt{2}$

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 12 2023 lúc 10:01

a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)

\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)

\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)

\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)

\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)

\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)

Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2021 lúc 23:53

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

Thầy Tùng Dương
Xem chi tiết
Dương Thế Trung
17 tháng 1 2022 lúc 16:47

chịu 😅

Khách vãng lai đã xóa
Nguyễn Huy Tú
17 tháng 1 2022 lúc 22:53

\(A=\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)

\(=\frac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{3}-\frac{5\left(4-\sqrt{7}\right)}{9}\)

\(=\frac{-16+4\sqrt{7}}{4}+\frac{18\sqrt{7}+36-20+5\sqrt{7}}{9}=-4+\sqrt{7}+\frac{23\sqrt{7}+16}{9}\)

b,\(B=\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}=\frac{2\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-2\right)}{2}+\frac{5\sqrt{6}}{6}\)

\(=\frac{12\sqrt{6}+5\sqrt{6}}{6}=\frac{17\sqrt{6}}{6}\)

Khách vãng lai đã xóa
Nguyễn Thị Quỳnh Anh	8A
2 tháng 9 2022 lúc 15:34

a,32 căn 7 -20/9

b, 17 căn 6 / 6

Lê Chính
Xem chi tiết
Lê Chính
7 tháng 8 2018 lúc 21:55

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

✿ Hương ➻❥
25 tháng 9 2018 lúc 20:23

bài 1:

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

b) \(\dfrac{26}{5-2\sqrt{3}}=\dfrac{26\left(5+2\sqrt{3}\right)}{13}=\dfrac{130+52\sqrt{3}}{13}\)

c)\(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}-2\sqrt{2}\right)}{46}=\dfrac{27\sqrt{6}-18\sqrt{2}-18\sqrt{2}+4\sqrt{6}}{46}=\dfrac{31\sqrt{6}-36\sqrt{2}}{46}\)