\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Tìm x
tìm x,biết:\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+3}{2007}+\frac{x+4}{2006}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
tìm x biết:\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
\(\text{Tìm x biết :}\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Tìm x biết:
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
X-1/2009 + X-2/2008 = X-3/2007 + X-4/2006
thôi nói cho nhanh nhé
bạn trừ 1 vào tất cả các giá trị VD: (X-1/2009)-1. Ta được tử chung là X-2010 cứ thế mà đặt ra làm thôi. Ko dc thì bảo tớ chỉ tiếp.
Tìm x biết: \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
lấy mỗi phân số trừ đi 1 ta đc (x-1)/2009 -1 + (x-2)/2008 -1 = (x-3)/2007-1 + (x-4)/2006 -1
suy ra (x-2010)/2009 + (x-2010)/2008 - (x-2010)/2007 - (x-2010)/2006 = 0
đặt (x-2010) làm nhân tử chung ta được
(x-2010).(1/2009 + 1/2008 - 1/2007 - 1/2006 ) = 0
=> x-2010 = 0
=> x = 2010
Tìm x biết :
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Rightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}-\frac{x-3-2007}{2007}-\frac{x-4-2006}{2006}=0\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
=>(x-2010)(1/2009+1/2008-1/2007-1/2006)=0
mà 1/2009+1/2008-1/2007-1/2006 khác 0
=>x-2010=0=>x=2010
cho mìh đi rồi gửi lại đề bài qua tin nhắn cho mìh, mìh sẽ giải cho bn
\(=>\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(=>\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(=>\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}<\frac{1}{2007};\frac{1}{2008}<\frac{1}{2006}=>\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}<0\)
\(=>x-2010=0<=>x=2010\)
\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(=>\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)
\(=>\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)
\(=>\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
\(=>x+2010=0\)
\(=>x=-2010\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)
\(\frac{x+5}{2005}+\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}+\frac{x}{2010}\)